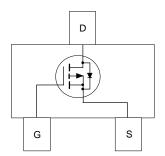
FDN336P

General Description


This P-Channel 2.5V specified MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge for superior switching performance.


These devices are well suited for portable electronics applications: load switching and power management, battery charging circuits, and DC/DC conversion.

Features

- -1.3 A, -20 V. $R_{DS(ON)} = 0.20 \Omega$ @ $V_{GS} = -4.5 \text{ V}$ $R_{DS(ON)} = 0.27 \Omega$ @ $V_{GS} = -2.5 \text{ V}$.
- Low gate charge (3.6 nC typical).
- High performance trench technology for extremely low R_{DS/ONI}.
- High power version of industry standard SOT-23 package.
 Identical pin out to SOT-23 with 30% higher power handling capability.

Absolute Maximum Ratings $T_A = 25^{\circ}C$ unless other wise noted

Symbol	Parameter	FDN336P	Units
V _{DSS}	Drain-Source Voltage	-20	V
V_{GSS}	Gate-Source Voltage	±8	V
I _D	Drain Current - Continuous	-1.3	А
	- Pulsed	-10	
P_{D}	Maximum Power Dissipation (Note 1	a) 0.5	W
	(Note	0.46	
T_J , T_{STG}	Operating and Storage Temperature Range	-55 to +150	°C
THERMA	L CHARACTERISTICS		
R _{eJA}	Thermal Resistance, Junction-to-Ambient (Note 1)	a) 250	°C/W
R _{θJC}	Thermal Resistance, Junction-to-Case (Note 1	75	°C/W

FDN336P

Symbol	Parameter	Conditions	Min	Тур	Max	Units
OFF CHAR	ACTERISTICS					
3V _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \ I_{D} = -250 \mu\text{A}$	-20			V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	I_D = -250 μ A, Referenced to 25 °C		-16		mV /°C
DSS	Zero Gate Voltage Drain Current	$V_{DS} = -16 \text{ V}, \ V_{GS} = 0 \text{ V}$			-1	μA
		$T_{J} = 55^{\circ}C$			-10	μA
GSSF	Gate - Body Leakage, Forward	V _{GS} = 8 V, V _{DS} = 0 V			100	nA
GSSR	Gate - Body Leakage, Reverse	$V_{GS} = -8 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
ON CHARA	CTERISTICS (Note 2)		•	•		
/ _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu\text{A}$	-0.4	-0.9	-1.5	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold Voltage Temp. Coefficient	I_D = -250 μ A, Referenced to 25 °C		3		mV /°C
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = -4.5 \text{ V}, I_D = -1.3 \text{ A}$ $T_J = 125^{\circ}\text{C}$		0.122	0.2	Ω
			;	0.18	0.32	
		$V_{GS} = -2.5 \text{ V}, I_{D} = -1.1 \text{ A}$		0.19	0.27	
D(ON)	On-State Drain Current	$V_{GS} = -4.5 \text{ V}, \ V_{DS} = -5 \text{ V}$	-5			Α
FS	Forward Transconductance	$V_{DS} = -4.5 \text{ V}, I_{D} = -2 \text{ A}$		4		S
YNAMIC C	HARACTERISTICS					
iss	Input Capacitance	$V_{DS} = -10 \text{ V}, \ V_{GS} = 0 \text{ V}, $ f = 1.0 MHz		330		pF
oss	Output Capacitance	f = 1.0 MHz		80		pF
rss	Reverse Transfer Capacitance			35		pF
WITCHING	CHARACTERISTICS (Note 2)					
O(on)	Turn - On Delay Time	$V_{DD} = -5 \text{ V}, \ I_{D} = -0.5 \text{ A}, \ V_{GS} = -4.5 \text{ V}, \ R_{GEN} = 6 \Omega$		7	15	ns
	Turn - On Rise Time			12	22	ns
O(off)	Turn - Off Delay Time			16	26	ns
1	Turn - Off Fall Time			5	12	ns
Q_g	Total Gate Charge	$V_{DS} = -10 \text{ V}, I_{D} = -2 \text{ A},$ $V_{GS} = -4.5 \text{ V}$		3.6	5	nC
Q_{gs}	Gate-Source Charge			0.8		nC
$Q_{ m gd}$	Gate-Drain Charge			0.7		nC
RAIN-SOU	RCE DIODE CHARACTERISTICS AND MA	XIMUM RATINGS				
3	Maximum Continuous Drain-Source Diode Fo	orward Current			-0.42	Α
/ _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = -0.42 \text{ A}$ (Note)		-0.7	-1.2	V

Note

^{1.} R_{BA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{BA} is guaranteed by design while R_{BA} is determined by the user's board design.

a. 250° C/W when mounted on a 0.02 in 2 pad of 2 oz Cu.

b. 270°C/W when mounted on a 0.001 in² pad of 2oz Cu.

Scale 1:1 on letter size paper

2. Pulse Test: Pulse Width $\leq 300 \mu s,$ Duty Cycle $\leq 2.0 \%.$