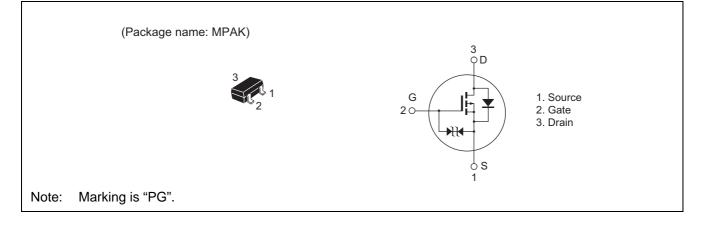
RQJ0303PGDQA


Features

• Low on-resistance

TY Semicondutor[®]

- $R_{DS(on)} = 54 \text{ m}\Omega \text{ typ} (V_{GS} = -10 \text{ V}, I_D = -1.6 \text{ A})$
- Low drive current
- High speed switching
- 4.5 V gate drive

Outline

Absolute Maximum Ratings

$(1a = 25^{\circ}C)$

Item	Symbol	Ratings	Unit
Drain to source voltage	V _{DSS}	-30	V
Gate to source voltage	V _{GSS}	+10 /20	V
Drain current	I _D	-3.3	A
Drain peak current	I _{D(Pulse)} Note1	-5	A
Body - drain diode reverse drain current	I _{DR}	-3.3	A
Channel dissipation	Pch Note2	0.8	W
Channel temperature	Tch	150	°C
Storage temperature	Tstg	–55 to +150	°C

Notes: 1. $PW \le 10 \ \mu s$, duty cycle $\le 1\%$

2. When using the glass epoxy board (FR-4: $40 \times 40 \times 1$ mm)

RQJ0303PGDQA

Electrical Characteristics

C	T_{2}	_	259	(\mathbf{D})
	1a	_	20	\mathcal{L}

Item	Symbol	Min	Тур	Max	Unit	Test conditions
Drain to source breakdown voltage	V _{(BR)DSS}	-30			V	$I_D = -10 \text{ mA}, V_{GS} = 0$
Gate to source breakdown voltage	V _{(BR)GSS}	+10		_	V	$I_{G} = +100 \ \mu A, V_{DS} = 0$
Gate to source breakdown voltage	V _{(BR)GSS}	-20		_	V	$I_G = -100 \ \mu A, \ V_{DS} = 0$
Gate to source leak current	I _{GSS}	_		+10	μΑ	$V_{GS} = +8 V, V_{DS} = 0$
Gate to source leak current	I _{GSS}	_	_	-10	μA	$V_{GS} = -16 V, V_{DS} = 0$
Drain to source leak current	I _{DSS}	_		-1	μA	$V_{DS} = -30 \text{ V}, \text{ V}_{GS} = 0$
Gate to source cutoff voltage	V _{GS(off)}	-1.0		-2.0	V	$V_{DS} = -10 \text{ V}, \text{ I}_{D} = -1 \text{ mA}$
Drain to source on state resistance	R _{DS(on)}	_	54	68	mΩ	$I_D = -1.6 \text{ A}, V_{GS} = -10 \text{ V}^{\text{Note3}}$
	R _{DS(on)}		76	107	mΩ	$I_D = -1.6 \text{ A}, V_{GS} = -4.5 \text{ V}^{\text{Note3}}$
Forward transfer admittance	y _{fs}	2.5	4.2		S	$I_D = -1.6 \text{ A}, V_{DS} = -10 \text{ V}^{\text{Note3}}$
Input capacitance	Ciss	_	625		pF	$V_{DS} = -10 V, V_{GS} = 0,$
Output capacitance	Coss	_	111		pF	f = 1 MHz
Reverse transfer capacitance	Crss	_	83	_	pF	
Turn - on delay time	t _{d(on)}	_	18	_	ns	$I_D = -1 A, V_{GS} = -10 V,$
Rise time	tr	_	29	_	ns	R_L = 6.6 Ω, Rg = 4.7 Ω
Turn - off delay time	t _{d(off)}	_	47	_	ns	
Fall time	t _f	_	5.7		ns	
Total gate charge	Qg	_	12	_	nC	$V_{DD} = -10 \text{ V}, \text{ V}_{GS} = -10 \text{ V},$
Gate to source charge	Qgs	_	1.5	_	nC	$I_{\rm D} = -3.3 {\rm A}$
Gate to drain charge	Qgd		2.9	_	nC]
Body - drain diode forward voltage	V _{DF}	—	-0.9	_	V	$I_F = -1.5 \text{ A}, V_{GS} = 0^{\text{Note3}}$

Notes: 3. Pulse test