

Description

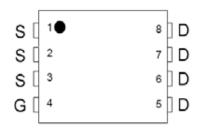
The ACE7401B uses advanced trench technology to provide excellent $R_{DS(ON)}$, and ultra-low low gate charge with a 25V gate rating. This device is suitable for use as a load switch or in PWM applications.

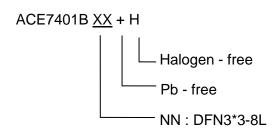
Features

- V_{DS}(V)=-30V
- I_D=-29A (V_{GS}=-10V)
- $R_{DS(ON)} < 13m\Omega (V_{GS}=-20V)$
- $R_{DS(ON)}$ < 14m Ω (V_{GS} =-10V)
- $R_{DS(ON)} < 17m\Omega (V_{GS} = -5V)$

Absolute Maximum Ratings

Parameter			Max	Unit
Drain-Source Voltage		V_{DSS}	-30	V
Gate-Source Voltage		V_{GSS}	±25	V
Drain Current (Continuous)	T _A =25°C		-29	
	T _A =100°C	· I _D	-23	
Drain Current (Pulse) ^C			-60	Α
Drain Current (Continuous)	T _A =25°C		-12	
	T _A =75°C	I _{DSM}	-9.7	
Power Dissipation ^B	T _A =25°C	В	29	W
	T _A =100°C	P _D	12	
Power Dissipation ^A	T _A =25°C	В	3.1	
	T _A =70°C	P _{DSM}	2	
Operating and Storage Temperature Range		$T_{J,}T_{STG}$	-55 to 150	°С


Thermal Characteristics						
Parameter		Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient ^A	t≦10s	Б	30	40	°C/W	
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	60	75		
Maximum Junction-to-Lead	Steady-State	$R_{\theta JL}$	3.5	4.2		



Packaging Type

DFN3*3-8L

Ordering information

Electrical Characteristics

 T_A =25 $^{\circ}C$ unless otherwise noted

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Static							
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	V _{GS} =0V, I _D =-250uA	-30			V	
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} =-30V, V_{GS} =0V			-1	uA	
Gate Leakage Current	I _{GSS}	$V_{GS}=\pm20V$, $V_{DS}=0V$			100	nA	
Static Drain-Source On-Resistance		V_{GS} =-20V, I_D =-10A		8.2	13	mΩ	
	R _{DS(ON)}	V_{GS} =-10V, I_D =-10A		9.2	14		
	, ,	V_{GS} =-5V, I_D =-7A		13.1	17		
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{DS}=-250\mu A$	-1.5	-1.8	-3	V	
Forward Transconductance	g FS	V_{DS} =-5V, I_{D} =-10A		26		S	
Diode Forward Voltage	V_{SD}	I _{SD} =-1A, V _{GS} =0V		-0.72	-1	V	
Maximum Body-Diode Continuous Current	I _S				-4.2	Α	
Switching							
Total Gate Charge	Q_g	V _{DS} =-15V, I _D =-12A V _{GS} =-10V		46.64	60.63		
Gate-Source Charge	Q_gs			7.84	10.2	nC	
Gate-Drain Charge	Q_{gd}			9.96	12.95		
Turn-On Delay Time	T _{d(on)}	V_{DS} =-15V, R_{L} =1.25 Ω ,		19.24	38.48	20	
Turn-On Rise Time	t _f	V_{GS} =-10V, R_{GEN} =3 Ω		8.56	17.12	ns	

ACE7401B

P-Channel Enhancement Mode Field Effect Transistor

Turn-Off Delay Time	t _{d(off)}			69.8	139.6	
Turn-Off Fall Time	t _f			18.52	37.04	
Dynamic						
Input Capacitance	C _{iss}	\		2777.96		
Output Capacitance	C _{oss}	V_{DS} =-15V, V_{GS} =0V f=1MHz		380.67		pF
Reverse Transfer Capacitance	C _{rss}	1—1101112		217.7		

Note:

- 1. The value of RqJA is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C. The Power dissipation P_{DSM} is based on RqJA t≤10s value and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 150°C may be used if the PCB allows it.
- 2. The power dissipation P_D is based on T_{J(MAX)}=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
- 3. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C. Ratings are based on low frequency and duty cycles to keep initial T_J =25°C.
- 4. The RqJA is the sum of the thermal impedence from junction to case RqJC and case to ambient.
- 5. The static characteristics in Figures 1 to 6 are obtained using <300ms pulses, duty cycle 0.5% max.
- 6. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=150°C. The SOA curve provides a single pulse rating.
- 7. The maximum current rating is package limited.
- These tests are performed with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C

Typical Performance Characteristics

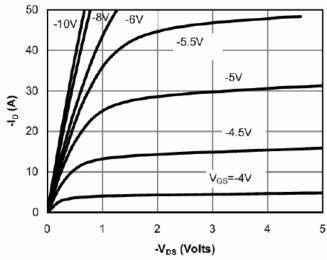


Fig 1: On-Region Characteristics

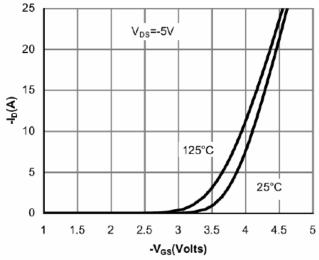


Figure 2: Transfer Characteristics

Typical Performance Characteristics

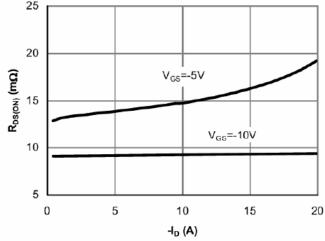


Figure 3: On-Resistance vs. Drain Current and Gate Voltage

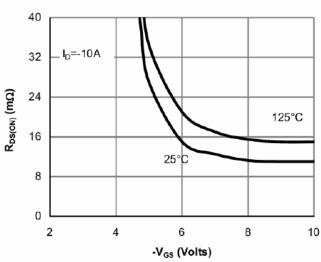


Figure 5: On-Resistance vs. Gate-Source Voltage

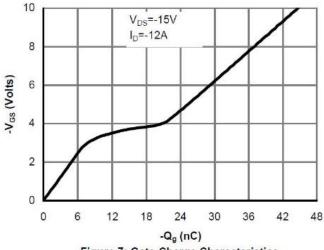


Figure 7: Gate-Charge Characteristics

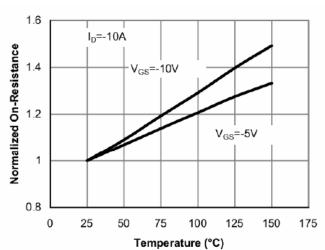


Figure 4: On-Resistance vs. Junction Temperature

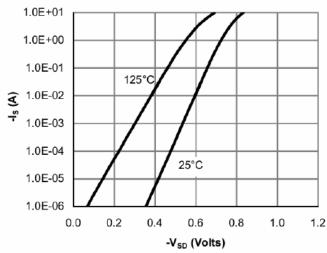


Figure 6: Body-Diode Characteristics

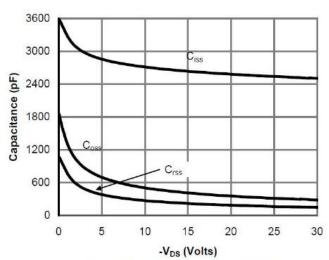


Figure 8: Capacitance Characteristics

Typical Performance Characteristics

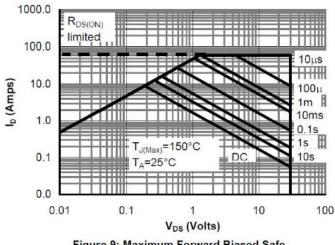


Figure 9: Maximum Forward Biased Safe Operating Area

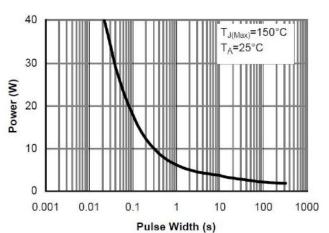
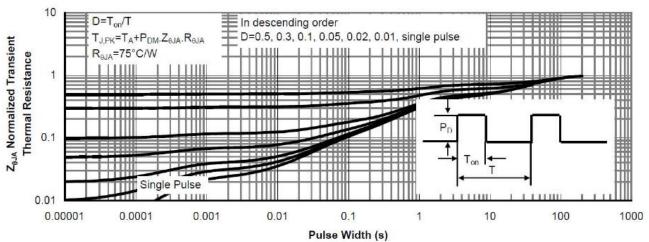
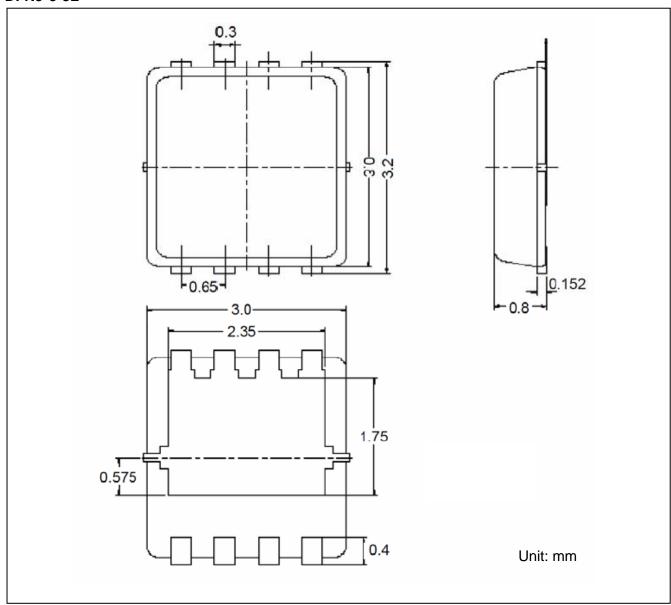


Figure 10: Single Pulse Power Rating Junction-to-Ambient




Figure 11: Normalized Maximum Transient Thermal Impedance

Packing Information

DFN3*3-8L

ACE7401B

P-Channel Enhancement Mode Field Effect Transistor

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/