

- SAW Frequency Stabilization
- Fundamental-Mode Oscillation at 1090.0 MHz
- Ideal for ATC/TCAS Transponder Applications
- Complies with Directive 2002/95/EC (RoHS)

Pb

The frequency of this oscillator is stabilized by UHF surface-acoustic-wave (SAW) technology, providing excellent performance in a compact, rugged oscillator operating at the fundamental frequency of 1090.0 MHz. The highly-reliable HO1081-3 is designed for use in Mode-S Air Traffic Control Transponders/Traffic Alert and Collision Avoidance Systems (TCAS).

Absolute Maximum Ratings

Rating	Value	Units	
DC Supply Voltage		0 to +13	VDC
Ambient Temperature Powered		-55 to +105	ŝ
	Storage	-55 to +125	C

Electrical Characteristics

	Characteristic	Sym	Notes	Minimum	Typical	Maximum	Units
Operating Frequency	Absolute Frequency	f _O	17	1089.75	1090.00	1090.25	MHz
	Tolerance from 1090.0 MHz	Δf_O	1,7			±250	kHz
RF Output Power		Po	3, 6	+10	+12	+13	dBm
Discrete Spurious	Second Harmonics				-25	-20	
	Third and Higher Harmonics		2, 3, 4		-35	-30	dBc
	Nonharmonic				<-100	-80	
SSB Phase Noise	1 kHz Offset		2.2.4			-90	dBo/Uz
	10 kHz Offset		2, 3, 4			-110	
RF Impedance	Nominal Impedance	Z _O	3		50		Ω
	Operating Load VSWR	GL	3, 5			1.5:1	
DC Power Supply	Operating Voltage	V _{CC}	2.6	11.75	12.00	12.25	VDC
	Operating Current	I _{CC}	3, 0		37	40	mA
Operating Ambient Temperature		T _A	3, 6	-55		+105	°C
Lid Symbolization (YY=	Year, WW=Week)			RFM HO1081	-3 YYWW		

Ŷ

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling. COCOM CAUTION: Approval by the U.S. Department of Commerce is required prior to export of this device.

Notes:

- One or more of the following United States patents apply: 4,760,352; 5,787,117; and 7,260,375.
- 2. Unless noted otherwise, all specifications are listed at T_A = +25°C ±2°C, V_{CC} = nominal voltage ±0.01 VDC, and load impedance = 50 Ω with VSWR ≤ 1.5:1.
- 3. The design, manufacturing process, and specifications of this device are subject to change without notice.
- Applies to oscillator only and not to sidebands caused by external electrical or mechanical sources. (Dedicated external voltage regulation with low-frequency filtering for the DC power supply and proper circuit board layout are recommended for optimum spectral purity.)
- 5. For specified maximum operating load VSWR,any angle, at F_O. No instability or damage will occur for any passive load impedance.
- 6. For any combination of V_{CC} and T_A within the specified operating ranges.
- 7. Applies for any combination of Note 5 and 6 conditions.

BLOCK DIAGRAM

ELECTRICAL CONNECTIONS

1090.0 MHz SAW Oscillator

HO1081-3

DIP16-8 Metal Dual-Inline Package with 8 Leads in a 16-lead DIP Configuration

Dimension	mm		Inches		
	MIN	MAX	MIN	MAX	
А	_	25.02	—	0.985	
В	_	12.83	—	0.505	
С	_	6.35		0.250	
D	0.40	0.51	0.016	0.020	
E	0.64 Nominal		0.025 Nominal		
F	7.62 Nominal		0.300 Nominal		
G	2.54 Nominal		0.100 Nominal		
н	17.78 Nominal		0.700 Nominal		
к	3,39	6.73	0.130	0.265	
L	1.30	-	0.051	—	
М	_	11.18	_	0.440	
Ν	_	22.60	—	0.890	
R	1.75	2.26	0.069	0.089	

