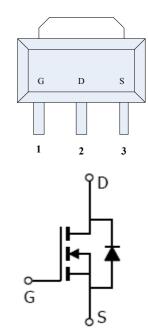
DESCRIPTION

The SPN8910 is the N-Channel logic enhancement mode power field effect transistor which is produced using super high cell density DMOS trench technology. The SPN8910 has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low RDS(ON) and fast switching speed.

APPLICATIONS


- High Frequency Small Power Switching forMB/NB/VGA
- Network DC/DC Power System
- Load Switch

FEATURES

- $100V/2A,RDS(ON) = 320m\Omega@VGS = 10V$
- High density cell design for extremely low RDS (ON)
- Exceptional on-resistance and maximum DC current capability
- SOT-89 package design

PIN CONFIGURATION

PART MARKING

PIN DESCRIPTION						
Pin	Symbol	Description				
1	G	Gate				
2	D	Drain				
3	S	Source				

ORDERING INFORMATION

Part Number	Package	Part Marking
SPN8910S89RGB	SOT-89	SPN8910
SPN8910S89TGB	SOT-89	SPN8910

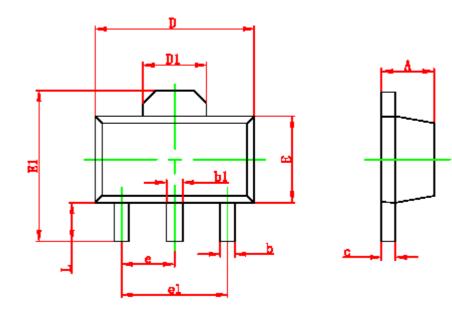
※ SPN8910S89RGB : Tape Reel ; Pb − Free ; Halogen - Free

※ SPN8910S89TGB : Tube ; Pb − Free ; Halogen - Free

ABSOULTE MAXIMUM RATINGS

(TA=25°C Unless otherwise noted)

Parameter			Symbol	Typical	Unit
Drain-Source Voltage			Vdss	100	V
Gate –Source Voltage			VGSS	±20	V
Continuous Drain Current(TJ=150°C) $\frac{TA=25°C}{TA=70°C}$		In	2.2	٨	
		Ta=70°C	ID	1.7	A
Pulsed Drain Current			Ідм	5.5	А
Power Dissipation	Ta=25°C		PD	1.5	W
Operating Junction Temperature			τJ	-55/150	°C
Storage Temperature Range			Tstg	-55/150	°C
Thermal Resistance-Junction to Ambient		Reja	85	°C/W	



ELECTRICAL CHARACTERISTICS

(TA= 25° C Unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Тур	Max.	Unit	
Static							
Drain-Source Breakdown Voltage	V(BR)DSS	VGs=0V,ID=250uA	100			v	
Gate Threshold Voltage	VGS(th)	VDS=VGS,ID=250uA	1	2.0 2.:		- V	
Gate Leakage Current	Igss	IGSS VDS=0V,VGS=±20V			±100	nA	
		VDS=80V,VGS=0V			1	uA	
Zero Gate Voltage Drain Current	Idss	Vds=80V,Vgs=0V TJ=55°C			5		
On-State Drain Current	ID(on)	Vds≥5V,Vgs =10V	2.2			А	
Drain-Source On-Resistance	RDS(on)	VGS=10V,ID=2A		0.30	0.32	Ω	
Dram-Source On-Resistance	KDS(on)	$V_{GS}=4.5V,I_{D}=1A$		0.31	0.34	Ω	
Forward Transconductance	gfs	Vds=5V,Id=2A		2.4		S	
Diode Forward Voltage	Vsd	Is=1A,VGS =0V			1.2	V	
Dynamic							
Total Gate Charge	Qg			9	13	nC	
Gate-Source Charge	Qgs	$V_{DS}=50V, V_{GS}=10V$ $I_{D}=2A$		2			
Gate-Drain Charge	Qgd			1.4			
Input Capacitance	Ciss			508		pF	
Output Capacitance	Coss	VDS=15V,VGS=0V f=1MHz		29			
Reverse Transfer Capacitance	Crss			16.5			
Turn-On Time	td(on)			2		nS	
	tr	VDD=50V, ID=2A,		21.5			
Turn Off Time	td(off)	VGEN=10V, RG= 3.3Ω		11.2			
Turn-Off Time	tf]		18.8			

SOT-89 PACKAGE OUTLINE

Symbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.020	
b1	0.400	0.580	0.016	0.023	
c	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.550 REF.		0.061 REF.		
E	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
e	1.500 TYP.		0.060 TYP.		
e1	3.000 TYP.		0.118 TYP.		
L	0.900	1.200	0.035	0.047	

Information provided is alleged to be exact and consistent. SYNC Power Corporation presumes no responsibility for the penalties of use of such information or for any violation of patents or other rights of third parties which may result from its use. No license is granted by allegation or otherwise under any patent or patent rights of SYNC Power Corporation. Conditions mentioned in this publication are subject to change without notice. This publication surpasses and replaces all information previously supplied. SYNC Power Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of SYNC Power Corporation.

©The SYNC Power logo is a registered trademark of SYNC Power Corporation ©2004 SYNC Power Corporation – Printed in Taiwan – All Rights Reserved SYNC Power Corporation 7F-2, No.3-1, Park Street NanKang District (NKSP), Taipei, Taiwan 115 Phone: 886-2-2655-8178 Fax: 886-2-2655-8468 ©http://www.syncpower.com

2010/12/09 Preliminary