GTM CORPORATION

Iŧ

R1

R2

G5J2167

750mA CMOS Positive Voltage Regulator

Description

The G5J2167 series of positive, linear regulators feature low quiescent current (45µA typ.) with low dropout voltage, making then ideal for battery applications.

Output voltages are set at the factory and trimmed to 1.5% accuracy.

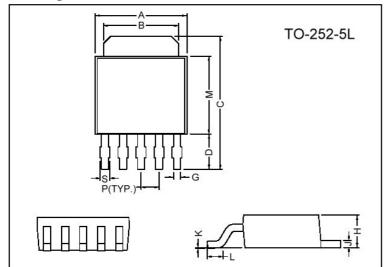
These rugged devices have both Thermal Shutdown, and Current Fold-back to prevent device failure under the "Worst" of operating conditions.

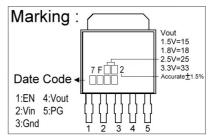
PPG

V_{ref}x115%

Vref x85%

An additional feature is a "Power Good" detector, which pulls low when the output is out of regulation. The G5J2167 is stable with an output capacitance of 4.7μ F or greater.

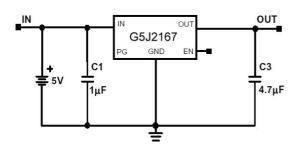

Features


- Very Low Dropout Voltage
- Guaranteed 750mA output
- Over-Temperature Shutdown
- Current Limiting
- Short Circuit Current Fold-back
- Low Temperature Coefficient
- Noise Reduction Bypass Capacitor
- Power-saving Shutdown Mode
- Power Good Output Function

Applications

- Battery Powered Widgets
- Instrumentation
- Wireless Devices
- PC Peripherals
- Portable Electronics

Package Dimensions



V_{ref}

REF.	Millimeter		REF.	Millimeter		
	Min.	Max.	NEF.	Min.	Max.	
А	6.35	6.73	G	0.45	0.60	
В	5.21	5.46	Н	2.20	2.40	
С	9.40	10.20	J	0.46	0.58	
D	2.40	3.00	К	0	0.15	
Р	1.27 REF.		L	0.90	1.50	
S	0.50	0.80	М	5.40	5.59	

Typical Application Circuit

Functional Block Diagram

Overcurrent Shutdown

Thermal

Shutdown

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Input Max Voltage	VIN	8	V
Output Current	IOUT	Pd/(VIN-VO)	mA
Output Voltage	Vout	1.5~3.3	V
Operating Ambient Temperature	Topr	-40 ~ +85	°C
Junction Temperature	Tj	-40 ~ +125	°C
Maximum Junction Temperature	Tj Max	150	°C
Internal Power Dissipation($\triangle T=100^{\circ}C$)	PD	1.2	W
EDS Classification		В	

Electrical Characteristics TA=25°C unless otherwise noted

(VIN=VOUT (T) +2V. VEN=VIN. CIN=1Uf. COUT=4.7Uf)

Parameter	Symbol	Condition		Min	ТҮР	Мах	Unit
Output Voltage	Vout(E) (Note1)	Io=1mA, VIN=VOUT(T)+2V		-1.5	Vout(T) (Note2)	1.5	%
Output Current	Io	Vo>1.2V		750	-	-	mA
Current Limit	ILIM	Vo>1.2V		750	-	-	mA
Short Circuit Current	Isc	Vin=Vout(T)+1V, Vo<0.4V		-	750	-	mA
Load Regulation	REGLOAD	VIN=VOUT(T)+2V, IO=1mA to 750mA		-1	0.2	1	%
	Vdropout	Io=750mA Vo=Vouт(E)-2%	Vout(T)=1.5V	-	-	1000	mV
Dropout Voltage			Vout(T)=1.8V	-	-	650	
			Vou⊤(T)≥2.0V	-	-	500	
Quiescent Current	Iq	VIN=VOUT(Г)+2V, Iо=0mA	-	45	70	μA
Ground Pin Current	Ignd	VIN=VOUT(T)+2	/, Io=1mA to 750mA	-	45	-	μA
Line Regulation	REGLINE	Io=1mA VIN=VOUT(T)+1 to VOUT(T)+2	Vout(T)<2.0V	-0.15	-	0.15	%
			2.0V≤Vout(T)<4.0V	-0.1	0.02	0.1	
			4.0V≤Vouт(T)	-0.4	-	0.4	
Input Voltage	Vin			Note3	-	7	V
Over Temperature Shutdown	OTS			-	150	-	°C
Over Temperature Hysterisis	OTH			-	30	-	°C
Output Voltage Temperature Coefficient	тс			-	30	-	ppm/°C
Power Supply Rejection	PSRR	Io=100mA Co=4.7μF (ceramic)	f=1kHz	-	75	-	dB
			f=10kHz	-	55	-	
			f=100kHz	-	30	-	
Output Voltage Noise	eN	f=10Hz~100kHz, Io=10mA, Co=4.7µF		-	30	-	μVrms
ENI Input Throphold	Veh	V _{IN} =2.7V to 7V		2.0	-	V_{IN}	V
EN Input Threshold	Vel	V _{IN} =2.7V to 7V		0	-	0.4	V
	Іен	VEN=VIN, VIN=2.7V to 7V		-	-	1	μA
EN Input Bias Current	Iel	VEN= 0V, VIN=2.7V to 7V		-	-	1	μA
Shutdown Supply Current	Isd	VIN=5V, VO=0V, VEN <vel< td=""><td>-</td><td>0.5</td><td>2</td><td>μA</td></vel<>		-	0.5	2	μA
Output Under Voltage	Vuv	PG goes Low when Vour too Low		-	-	84	% Vout(T)
Output Over Voltage	Vov	PG goes Low when Vour too High		105	-	-	% Vout(T)
PG Leakage Current	ILC	VPG=7V		-	-	1.0	μA
PG Voltage Low	Vol	Vol Isink=0.25mA		-	-	0.4	V

Note 1: VOUT (E) =Effective Output Voltage (i.e. the output voltage when "VOUT (T) + 2.0V" is provided at the VIN pin while maintaining a certain lout value).

2: VOUT (T) =Specified Output Voltage

3: VIN (MIN) =VOUT+VDROPOUT

Ordering Information (contd.)

Part Number	Marking	Output Voltage	Part Number	Marking	Output Voltage
G5J2167-15	7F152 XXXX	1.5V	G5J2167-18	7F182 XXXX	1.8V
G5J2167-25	7F252 XXXX	2.5V	G5J2167-33	7F332 XXXX	3.3V

Detailed Description

The G5J2167 series of COMS regulators contain a PMOS pass transistor, voltage reference, error amplifier, over-current protection, and thermal shutdown.

The P-channel pass transistor receives data from the error amplifier, over-current shutdown, and thermal protection circuits. During normal operation, the error amplifier compares the output voltage to a precision reference. Over-current and Thermal shutdown circuits become active when the junction temperature exceeds 140° C, or the current exceeds 2.2A. During thermal shutdown, the output voltage remains low. Normal operation is restored when the junction temperature drops below 120° C.

The G5J2167 behaves like a current source when the load reaches 2.2A. However, if the load impedance drops below 0.3ohms, the current drops back to 600mA to prevent excessive power dissipation. Normal operation is restored when the load resistance exceeds 0.75ohms.

External Capacitors

The G5J2167 is stable with an output capacitance to ground of 4.7μ F or greater. Ceramic capacitors have the lowest ESR, and will offer the best AC performance. Conversely, Aluminum Electrolytic capacitors exhibit the highest ESR, resulting in the poorest AC response. Unfortunately, large value ceramic capacitors are comparatively expensive. One option is to parallel a 0.1μ F ceramic capacitor with a 10μ F Aluminum Electrolytic. The benefit is low ESR, high capacitance, and low overall cost.

A second capacitor is recommended between the input and ground to stabilize VIN. The input capacitor should be at least 0.1µF to have a beneficial effect.

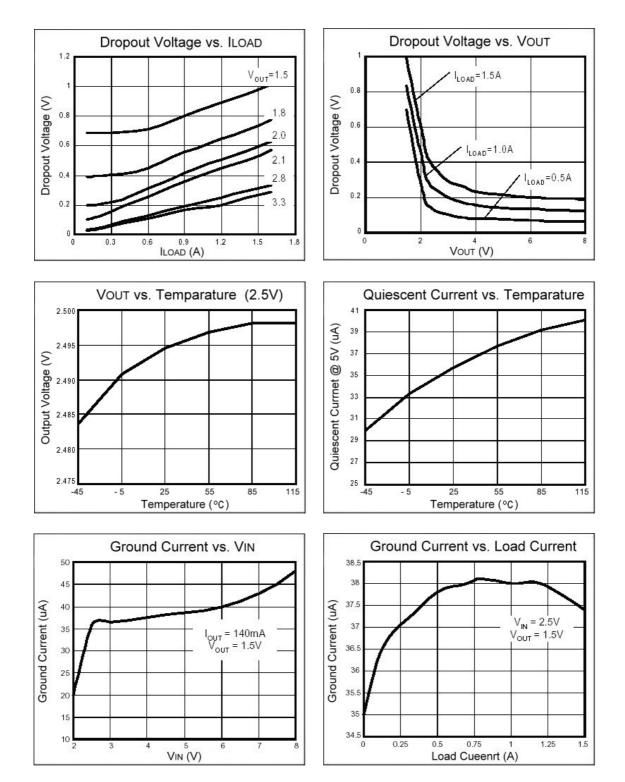
All capacitors should be placed in close proximity to the pins. A "Quiet" ground termination is desirable. This can be achieved with a "Star" connection.

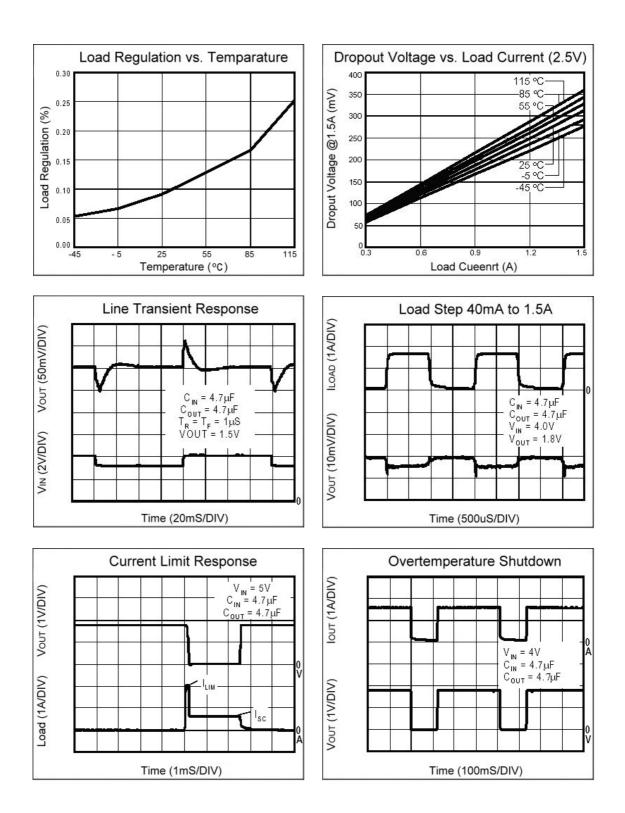
Enable

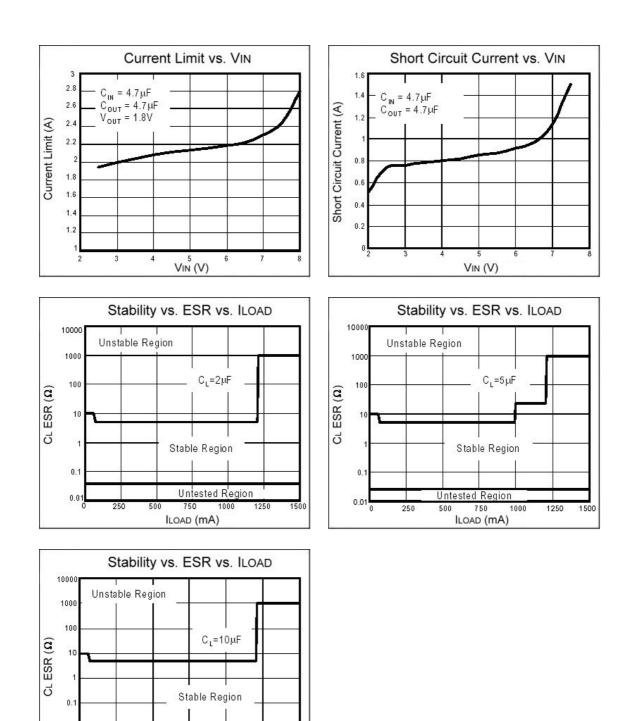
When EN pin is pulled low, the PMOS pass transistor shuts off, and all internal circuits are powered down. In this state, the quiescent current is less than 2µA. This pin behaves much like an electronic switch.

100K Ω resistor is necessary between VEN source and EN pin when VEN is high than VIN.

(Note: There is no internal pull-up for EN pin. It can not be floating.)


Power Good


The G5J2167 includes the Power Good feature. When the output is not within $\pm 15\%$ of the specified voltage, it pulls low. This can occur under the following conditions:


- 1) Input Voltage too low.
- 2) During Over-Temperature.
- 3) During Over-Current.
- 4) If output is pulled up.

(Note: PG pin is an open-drain output.)

Characteristics Curve

Important Notice:

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written approval of GTM. GTM reserves the right to make changes to its products without notice.

Untested Region

1000

1250

1500

750

ILOAD (mA)

500

GTM serves the fight to that a transfer to the products without notice. GTM serves no liability for any consequence of customer product design, infringement of patents, or application assistance.

0.01

0.001

250

Head Office And Factory:
Taiwan: No. 17-1 Tatung Rd. Fu Kou Hsin-Chu Industrial Park, Hsin-Chu, Taiwan, R. O. C.
TEL: 886-3-597-7061 FAX: 886-3-597-9220, 597-0785
China: (201203) No.255, Jang-Jiang Tsai-Lueng RD., Pu-Dung-Hsin District, Shang-Hai City, China TEL: 86-21-5895-7671 ~ 4 FAX: 86-21-38950165