Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

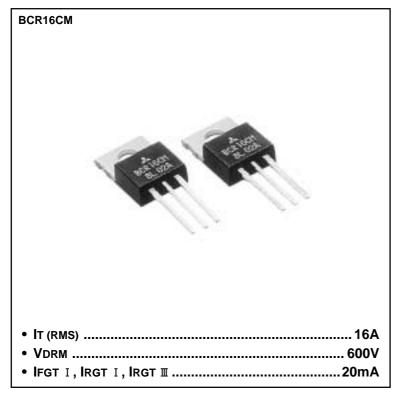
- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

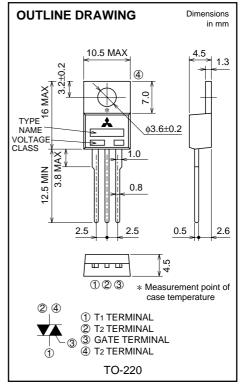
Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note: Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices.

Renesas Technology Corp. Customer Support Dept. April 1, 2003




MITSUBISHI SEMICONDUCTOR (TRIAC)

BCR16CM

Refer to the page 6 as to the product guaranteed maximum junction temperature 150°C

MEDIUM POWER USE NON-INSULATED TYPE, PLANAR PASSIVATION TYPE

APPLICATION

Contactless AC switches, light dimmer, electric flasher unit, hair drier,

control of household equipment such as TV sets · stereo · refrigerator · washing machine · infrared kotatsu · carpet · electric fan, solenoid drivers,

small motor control, copying machine, electric tool,

other general purpose control applications

MAXIMUM RATINGS

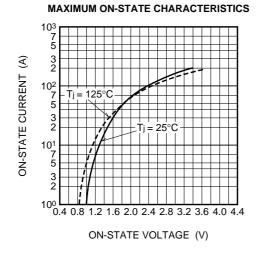
Symbol	Parameter	Voltage class	Unit
		12	Unit
VDRM	Repetitive peak off-state voltage *1	600	V
VDSM	Non-repetitive peak off-state voltage *1	720	V

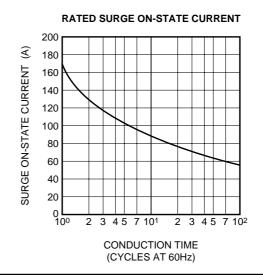
Symbol	Parameter	Conditions	Ratings	Unit
IT (RMS)	RMS on-state current	Commercial frequency, sine full wave 360° conduction, Tc=100°C *3	16	Α
Ітѕм	Surge on-state current	60Hz sinewave 1 full cycle, peak value, non-repetitive	170	Α
I ² t	I ² t for fusing	Value corresponding to 1 cycle of half wave 60Hz, surge on-state current	121 A ² s	
Рсм	Peak gate power dissipation		5.0	W
PG (AV)	Average gate power dissipation		0.5	W
Vgм	Peak gate voltage		10	V
IGМ	Peak gate current		2	А
Tj	Junction temperature		-40 ~ +125	°C
Tstg	Storage temperature		-40 ~ +125	°C
_	Weight	Typical value	2.0	g

*1. Gate open.

Refer to the page 6 as to the product guaranteed maximum junction temperature 150°C

MEDIUM POWER USE NON-INSULATED TYPE, PLANAR PASSIVATION TYPE

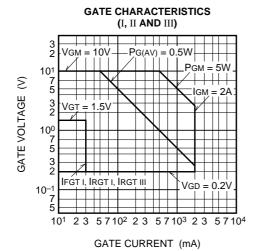

ELECTRICAL CHARACTERISTICS

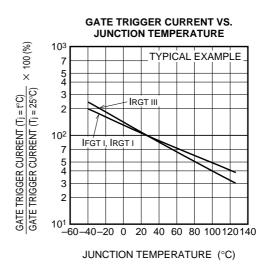

Oh. ad	Parameter		Tool and Mana	Limits			l lait
Symbol			Test conditions		Тур.	Max.	Unit
IDRM	Repetitive peak off-state current		Tj=125°C, VDRм applied	_	_	2.0	mA
Vтм	On-state voltage		Tc=25°C, ITM=25A, Instantaneous measurement	_	_	1.5	V
VFGT I		I		_	_	1.5	V
VRGT I	Gate trigger voltage *2	I	Tj=25°C, VD=6V, RL=6 Ω , RG=330 Ω	_	_	1.5	V
VRGT Ⅲ		Ш		_	_	1.5	V
IFGT I		I		_	_	20	mA
IRGT I	Gate trigger current *2	I	Tj=25°C, VD=6V, RL=6 Ω , RG=330 Ω	_	_	20	mA
IRGT Ⅲ				_	_	20	mA
VGD	Gate non-trigger voltage		Tj=125°C, VD=1/2VDRM	0.2	_	_	V
Rth (j-c)	Thermal resistance		Junction to case *3 *4	_	_	1.4	°C/W
(dv/dt)c	Critical-rate of rise of off-state commutating voltage	* 5	T _j =125°C	10		_	V/µs

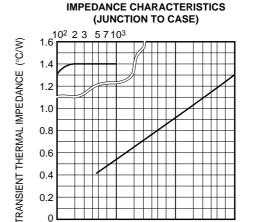
- *2. Measurement using the gate trigger characteristics measurement circuit.*3. Case temperature is measured at the T2 terminal 1.5mm away from the molded case.
- *4. The contact thermal resistance Rth (c-f) in case of greasing is 1.0°C/W. *5. Test conditions of the critical-rate of rise of off-state commutating voltage is shown in the table below.

Test conditions	Commutating voltage and current waveforms (inductive load)
1. Junction temperature Tj=125°C 2. Rate of decay of on-state commutating current (di/dt)c=-8.0A/ms 3. Peak off-state voltage VD=400V	SUPPLY VOLTAGE MAIN CURRENT MAIN VOLTAGE (dv/dt)c TIME VD

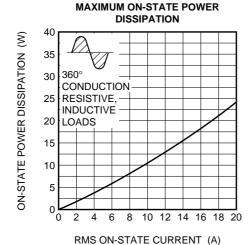
PERFORMANCE CURVES

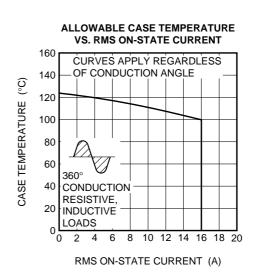






NON-INSULATED TYPE, PLANAR PASSIVATION TYPE


GATE TRIGGER VOLTAGE VS. JUNCTION TEMPERATURE 8 103 TYPICAL EXAMPLE 100 × 3 GATE TRIGGER VOLTAGE ($T_j = t^{\circ}$ C) GATE TRIGGER VOLTAGE ($T_j = 25^{\circ}$ C 2 102 54 3 101 -60-40-20 0 20 40 60 80 100120140 JUNCTION TEMPERATURE (°C)

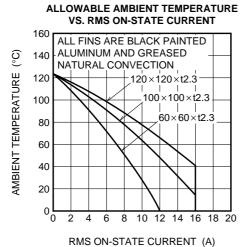


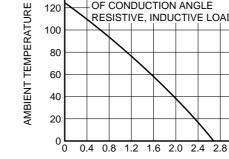
10⁻¹ 2 3 5 7 10⁰ 2 3 5 7 10¹ 2 3 5 7 10²

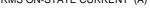
CONDUCTION TIME (CYCLES AT 60Hz)

MAXIMUM TRANSIENT THERMAL

CENESAS Renesas Technology Corp.


[္]


160

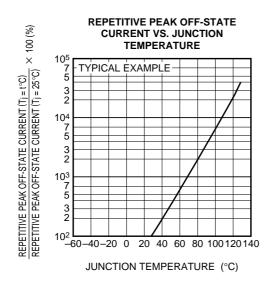

140

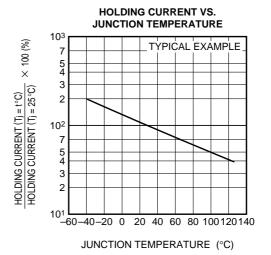
120

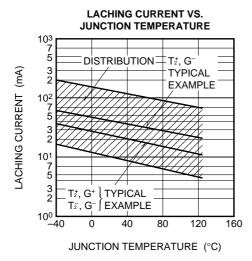
100

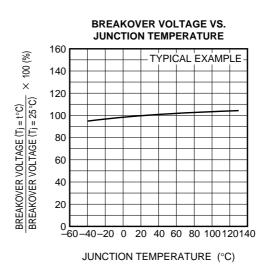
ALLOWABLE AMBIENT TEMPERATURE

VS. RMS ON-STATE CURRENT

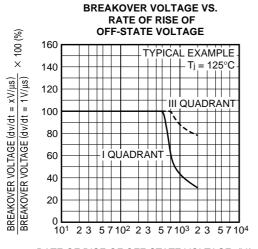

CURVES APPLY REGARDLESS


RESISTIVE, INDUCTIVE LOADS

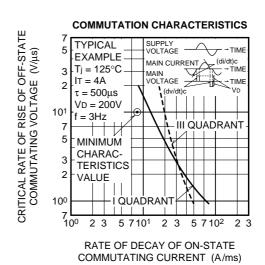

NATURAL CONVECTION


OF CONDUCTION ANGLE

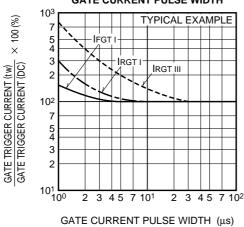
NO FINS

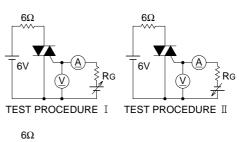


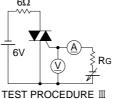
Mar. 2002



Refer to the page 6 as to the product guaranteed maximum junction temperature 150°C

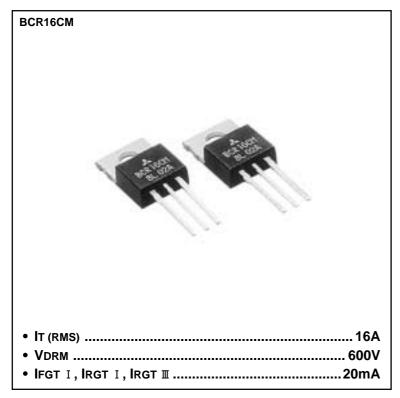

MEDIUM POWER USE NON-INSULATED TYPE, PLANAR PASSIVATION TYPE

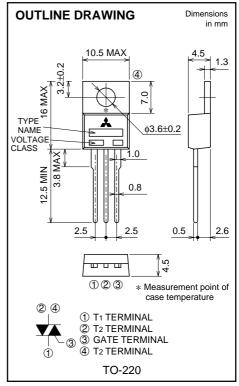

RATE OF RISE OF OFF-STATE VOLTAGE $(V/\mu s)$



GATE TRIGGER CURRENT VS. GATE CURRENT PULSE WIDTH

GATE TRIGGER CHARACTERISTICS TEST CIRCUITS




MITSUBISHI SEMICONDUCTOR (TRIAC)

BCR16CM

The product guaranteed maximum junction temperature 150°C (See warning.)

MEDIUM POWER USE NON-INSULATED TYPE, PLANAR PASSIVATION TYPE

APPLICATION

Contactless AC switches, light dimmer, electric flasher unit, hair drier,

control of household equipment such as TV sets · stereo · refrigerator · washing machine · infrared kotatsu · carpet · electric fan, solenoid drivers, small motor control, copying machine, electric tool, other general purpose control applications

(Warning)

- 1. Refer to the recommended circuit values around the triac before using.
- 2. Be sure to exchange the specification before using. If not exchanged, general triacs will be supplied.

MAXIMUM RATINGS

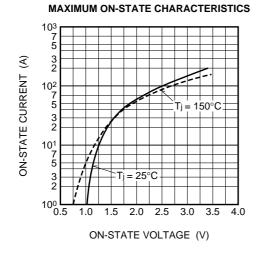
Symbol	Parameter	Voltage class	Unit
		12	Unit
VDRM	Repetitive peak off-state voltage *1	600	V
VDSM	Non-repetitive peak off-state voltage *1	720	V

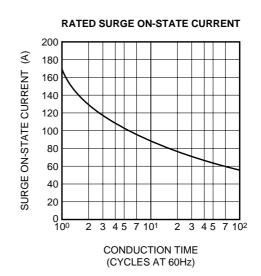
Symbol	Parameter	Conditions	Ratings	Unit
IT (RMS)	RMS on-state current	Commercial frequency, sine full wave 360° conduction, Tc=125°C *3	16 A	
Ітѕм	Surge on-state current	60Hz sinewave 1 full cycle, peak value, non-repetitive	170 A	
l ² t	I ² t for fusing	Value corresponding to 1 cycle of half wave 60Hz, surge on-state current	121 A ² s	
Рсм	Peak gate power dissipation		5.0	W
PG (AV)	Average gate power dissipation		0.5	W
Vgм	Peak gate voltage		10	V
IGМ	Peak gate current		2	Α
Tj	Junction temperature		-40 ~ +150	°C
Tstg	Storage temperature		-40 ~ +150	°C
_	Weight	Typical value	2.0	g

*1. Gate open.

The product guaranteed maximum junction temperature 150°C (See warning.)

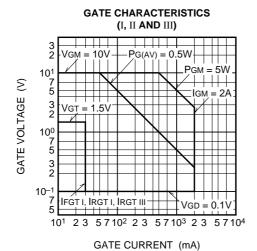
MEDIUM POWER USE NON-INSULATED TYPE, PLANAR PASSIVATION TYPE

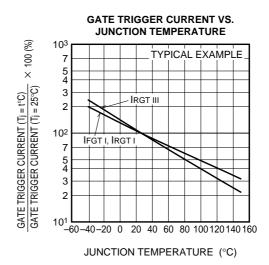

ELECTRICAL CHARACTERISTICS

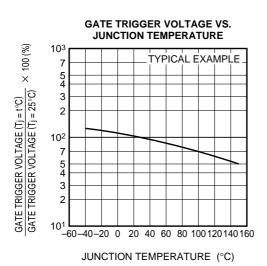

O. wash ask		-	Limits			11.7	
Symbol	Parameter		Test conditions		Тур.	Max.	Unit
IDRM	Repetitive peak off-state current		Тj=150°C, VDRм applied	_	_	2.0	mA
Vтм	On-state voltage		Tc=25°C, ITM=25A, Instantaneous measurement	_	_	1.5	V
VFGT I		I			_	1.5	V
VRGT I	Gate trigger voltage *2	I	Tj=25°C, VD=6V, RL=6 Ω , RG=330 Ω	_	_	1.5	V
VRGT Ⅲ		Ш		_	_	1.5	V
IFGT I		I		_	_	20	mA
IRGT I	Gate trigger current *2	I	Tj=25°C, VD=6V, RL=6 Ω , RG=330 Ω	_	_	20	mA
IRGT Ⅲ		II		_	_	20	mA
VGD	Gate non-trigger voltage		Tj=125°C/150°C, VD=1/2VDRM	0.2/0.1	_	_	V
Rth (j-c)	Thermal resistance		Junction to case *3 *4	_	_	1.4	°C/W
(dv/dt)c	Critical-rate of rise of off-state commutating voltage	* 5	Tj=125°C/150°C	10/1	_	_	V/μs

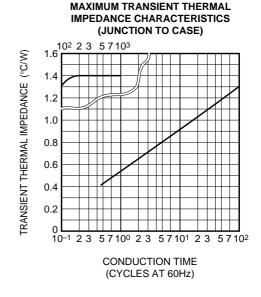
- *2. Measurement using the gate trigger characteristics measurement circuit.*3. Case temperature is measured at the T2 terminal 1.5mm away from the molded case.
- *4. The contact thermal resistance Rth (c-f) in case of greasing is 1.0°C/W. *5. Test conditions of the critical-rate of rise of off-state commutating voltage is shown in the table below.

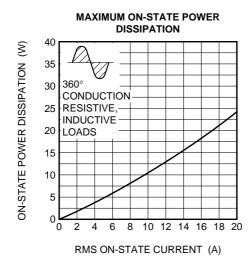
Test conditions	Commutating voltage and current waveforms (inductive load)
1. Junction temperature Tj=125°C/150°C 2. Rate of decay of on-state commutating current (di/dt)c=-8.0A/ms 3. Peak off-state voltage VD=400V	SUPPLY VOLTAGE — TIME MAIN CURRENT (di/dt)c — TIME MAIN VOLTAGE — TIME (dv/dt)c VD

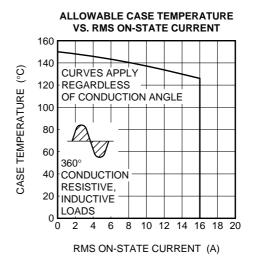

PERFORMANCE CURVES

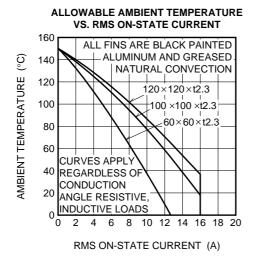


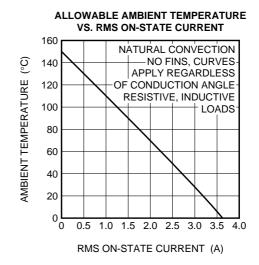


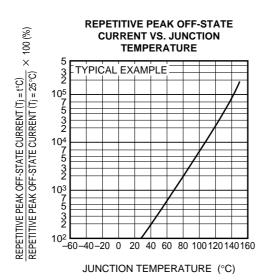


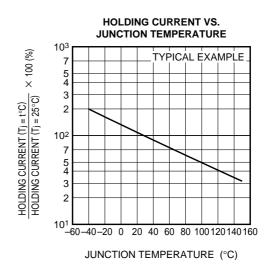


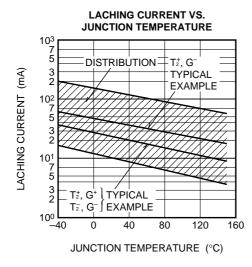


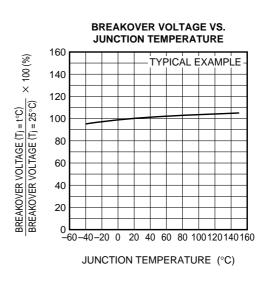


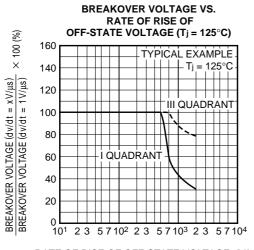


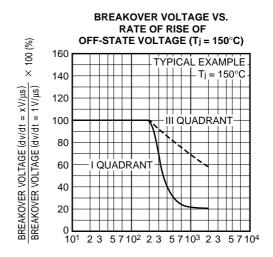






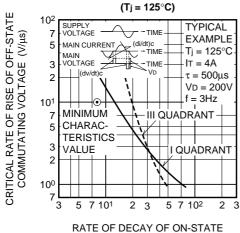




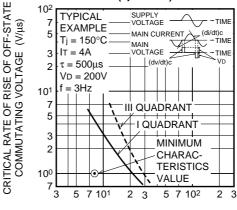

CENESAS Renesas Technology Corp.

The product guaranteed maximum junction temperature 150°C (See warning.)

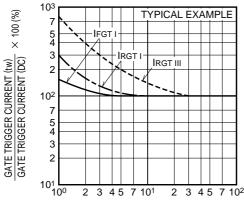
MEDIUM POWER USE NON-INSULATED TYPE, PLANAR PASSIVATION TYPE



RATE OF RISE OF OFF-STATE VOLTAGE $(V/\mu s)$


RATE OF RISE OF OFF-STATE VOLTAGE $(V/\mu s)$

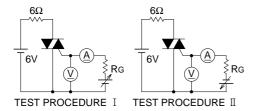
COMMUTATION CHARACTERISTICS

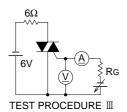

COMMUTATING CURRENT (A/ms)

COMMUTATION CHARACTERISTICS $(T_j = 150^{\circ}C)$

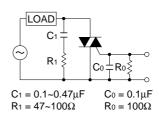
RATE OF DECAY OF ON-STATE COMMUTATING CURRENT (A/ms)

GATE TRIGGER CURRENT VS. GATE CURRENT PULSE WIDTH




GATE CURRENT PULSE WIDTH (µs)

The product guaranteed maximum junction temperature 150°C (See warning.)


MEDIUM POWER USE NON-INSULATED TYPE, PLANAR PASSIVATION TYPE

GATE TRIGGER CHARACTERISTICS TEST CIRCUITS

RECOMMENDED CIRCUIT VALUES AROUND THE TRIAC

