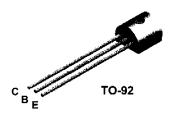
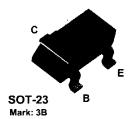
# New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.


TELEPHONE: (973) 376-2922


(212) 227-6005

FAX: (973) 376-8960

#### **PN918**

## **MMBT918**





#### **NPN RF Transistor**

This device is designed for use as RF amplifiers, oscillators and multipliers with collector currents in the 1.0 mA to 30 mA range. Sourced from Process 43.

#### **Absolute Maximum Ratings\***

TA = 25°C unless otherwise noted

| Symbol                            | Parameter                                        | Value       | Units |
|-----------------------------------|--------------------------------------------------|-------------|-------|
| V <sub>CEO</sub>                  | Collector-Emitter Voltage                        | 15          | >     |
| V <sub>CBO</sub>                  | Collector-Base Voltage                           | 30          | V     |
| V <sub>EBO</sub>                  | Emitter-Base Voltage                             | 3.0         | V     |
| lc                                | Collector Current - Continuous                   | 50          | mA    |
| T <sub>J</sub> , T <sub>stg</sub> | Operating and Storage Junction Temperature Range | -55 to +150 | °C    |

<sup>\*</sup>These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

1) These ratings are based on a maximum junction temperature of 150 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

#### Thermal Characteristics TA = 25°C unless otherwise noted

| Symbol           | Characteristic                                | V          | Мах        |             |
|------------------|-----------------------------------------------|------------|------------|-------------|
|                  |                                               | PN918      | *MMBT918   |             |
| P <sub>D</sub>   | Total Device Dissipation<br>Derate above 25°C | 350<br>2.8 | 225<br>1.8 | mW<br>mW/∘C |
| R <sub>eJC</sub> | Thermal Resistance, Junction to Case          | 125        |            | °C/W        |
| $R_{\theta JA}$  | Thermal Resistance, Junction to Ambient       | 357        | 556        | °C/W        |

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

**Quality Semi-Conductors** 

### **NPN RF Transistor**

(continued)

| Symbol                                                | Parameter                                                                        | Test Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Min | Max        | Unit                 |
|-------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|----------------------|
|                                                       |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |            |                      |
| OFF CHA                                               | RACTERISTICS                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |            |                      |
| V <sub>CEO(SUS)</sub>                                 | Collector-Emitter Sustaining Voltage*                                            | $I_C = 3.0 \text{ mA}, I_B = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15  |            | V                    |
| $V_{(BR)CBO}$                                         | Collector-Base Breakdown Voltage                                                 | $I_{\rm C} = 1.0  \mu \text{A},  I_{\rm E} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30  | <u> </u>   | V                    |
| $V_{(BR)EBO}$                                         | Emitter-Base Breakdown Voltage                                                   | $I_E = 10  \mu A, I_C = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.0 |            | V                    |
| I <sub>CBO</sub>                                      | Collector Cutoff Current                                                         | V <sub>CB</sub> = 15 V, I <sub>E</sub> = 0                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | 0.01       | μА                   |
|                                                       | L                                                                                | V <sub>CB</sub> = 15 V, T <sub>A</sub> = 150°C                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | 1.0        | μA                   |
|                                                       |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |            | .,                   |
| ON CHAR                                               | ACTERISTICS                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |            |                      |
| h <sub>FE</sub>                                       | DC Current Gain                                                                  | $I_{\rm C}$ = 3.0 mA, $V_{\rm CE}$ = 1.0 V                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20  |            | <u> </u>             |
| V <sub>CE(sat)</sub>                                  | Collector-Emitter Saturation Voltage                                             | I <sub>C</sub> = 10 mA, I <sub>B</sub> = 1.0 mA                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | 0.4        | V                    |
| V <sub>BE(sat)</sub>                                  | Base-Emitter Saturation Voltage                                                  | I <sub>C</sub> = 10 mA, I <sub>B</sub> = 1.0 mA                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | 1.0        | V                    |
| SMALL SI                                              | GNAL CHARACTERISTICS  Current Gain - Bandwidth Product                           | 11 - 40 40 /- 40 /-                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |            |                      |
| '1                                                    |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |            |                      |
|                                                       |                                                                                  | I <sub>C</sub> = 4.0 mA, V <sub>CE</sub> = 10 V,<br>f = 100 MHz                                                                                                                                                                                                                                                                                                                                                                                                                  | 600 |            | MHz                  |
| Cobo                                                  | Output Capacitance                                                               | f = 100 MHz<br>V <sub>CB</sub> = 10 V, I <sub>E</sub> = 0, f = 1.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                           | 600 | 1.7        | MHz                  |
|                                                       | Output Capacitance                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 600 | 3.0        | pF<br>pF             |
| C <sub>ibo</sub>                                      | Output Capacitance Input Capacitance                                             | $\begin{split} &f = 100 \text{ MHz} \\ &V_{CB} = 10 \text{ V, } I_E = 0, f = 1.0 \text{ MHz} \\ &V_{CB} = 0, I_E = 0, f = 1.0 \text{ MHz} \\ &V_{BE} = 0.5 \text{ V, } I_C = 0, f = 1.0 \text{ MHz} \end{split}$                                                                                                                                                                                                                                                                 | 600 | 3.0<br>2.0 | pF<br>pF<br>pF       |
| C <sub>ibo</sub>                                      | Output Capacitance                                                               | $\begin{split} &f = 100 \text{ MHz} \\ &V_{CB} = 10 \text{ V, } I_E = 0, f = 1.0 \text{ MHz} \\ &V_{CB} = 0, I_E = 0, f = 1.0 \text{ MHz} \\ &V_{BE} = 0.5 \text{ V, } I_C = 0, f = 1.0 \text{ MHz} \\ &I_C = 1.0 \text{ mA, } V_{CE} = 6.0 \text{ V,} \end{split}$                                                                                                                                                                                                              | 600 | 3.0        | pF                   |
| C <sub>ibo</sub>                                      | Output Capacitance Input Capacitance                                             | $\begin{split} &f = 100 \text{ MHz} \\ &V_{CB} = 10 \text{ V, } I_E = 0, f = 1.0 \text{ MHz} \\ &V_{CB} = 0, I_E = 0, f = 1.0 \text{ MHz} \\ &V_{BE} = 0.5 \text{ V, } I_C = 0, f = 1.0 \text{ MHz} \end{split}$                                                                                                                                                                                                                                                                 | 600 | 3.0<br>2.0 | pF<br>pF<br>pF       |
| C <sub>ibo</sub><br>NF                                | Output Capacitance Input Capacitance Noise Figure                                | $\begin{split} &f = 100 \text{ MHz} \\ &V_{CB} = 10 \text{ V, } I_E = 0, f = 1.0 \text{ MHz} \\ &V_{CB} = 0, I_E = 0, f = 1.0 \text{ MHz} \\ &V_{BE} = 0.5 \text{ V, } I_C = 0, f = 1.0 \text{ MHz} \\ &I_C = 1.0 \text{ mA, } V_{CE} = 6.0 \text{ V,} \end{split}$                                                                                                                                                                                                              | 600 | 3.0<br>2.0 | pF<br>pF<br>pF       |
| C <sub>ibo</sub><br>NF                                | Output Capacitance Input Capacitance Noise Figure                                | $\begin{split} &f = 100 \text{ MHz} \\ &V_{CB} = 10 \text{ V, } I_E = 0, f = 1.0 \text{ MHz} \\ &V_{CB} = 0, I_E = 0, f = 1.0 \text{ MHz} \\ &V_{BE} = 0.5 \text{ V, } I_C = 0, f = 1.0 \text{ MHz} \\ &I_C = 1.0 \text{ mA, } V_{CE} = 6.0 \text{ V,} \end{split}$                                                                                                                                                                                                              | 600 | 3.0<br>2.0 | pF<br>pF<br>pF       |
| C <sub>ibo</sub><br>NF<br>FUNCTION<br>G <sub>pe</sub> | Output Capacitance Input Capacitance Noise Figure  NAL TEST Amplifier Power Gain | $\begin{split} &f = 100 \text{ MHz} \\ &V_{CB} = 10 \text{ V, } I_E = 0, f = 1.0 \text{ MHz} \\ &V_{CB} = 0, I_E = 0, f = 1.0 \text{ MHz} \\ &V_{BE} = 0.5 \text{ V, } I_C = 0, f = 1.0 \text{ MHz} \\ &I_C = 1.0 \text{ mA, } V_{CE} = 6.0 \text{ V,} \end{split}$                                                                                                                                                                                                              | 15  | 3.0<br>2.0 | pF<br>pF<br>pF       |
| C <sub>ibo</sub><br>NF<br>FUNCTION<br>G <sub>pe</sub> | Output Capacitance Input Capacitance Noise Figure                                | $\begin{split} &f=100 \text{ MHz} \\ &V_{CB}=10 \text{ V, } I_{E}=0, f=1.0 \text{ MHz} \\ &V_{CB}=0, I_{E}=0, f=1.0 \text{ MHz} \\ &V_{BE}=0.5 \text{ V, } I_{C}=0, f=1.0 \text{ MHz} \\ &I_{C}=1.0 \text{ mA, } V_{CE}=6.0 \text{ V,} \\ &R_{G}=400 \Omega, f=60 \text{ MHz} \\ \end{split}$ $\begin{aligned} &V_{CB}=12 \text{ V, } I_{C}=6.0 \text{ mA,} \\ &f=200 \text{ MHz} \\ \end{aligned}$ $\begin{aligned} &V_{CB}=15 \text{ V, } I_{C}=8.0 \text{ mA,} \end{aligned}$ |     | 3.0<br>2.0 | pF<br>pF<br>pF<br>dB |
| C <sub>obo</sub> C <sub>ibo</sub> NF FUNCTION Gpe Po  | Output Capacitance Input Capacitance Noise Figure  NAL TEST Amplifier Power Gain | $\begin{split} &f=100 \text{ MHz} \\ &V_{CB}=10 \text{ V, } I_{E}=0, f=1.0 \text{ MHz} \\ &V_{CB}=0, I_{E}=0, f=1.0 \text{ MHz} \\ &V_{BE}=0.5 \text{ V, } I_{C}=0, f=1.0 \text{ MHz} \\ &I_{C}=1.0 \text{ mA, } V_{CE}=6.0 \text{ V,} \\ &R_{G}=400\Omega, f=60 \text{ MHz} \\ \end{split}$                                                                                                                                                                                     | 15  | 3.0<br>2.0 | pF<br>pF<br>dB       |

<sup>\*</sup>Pulse Test: Pulse Width  $\leq$  300  $\mu$ s, Duty Cycle  $\leq$  2.0%