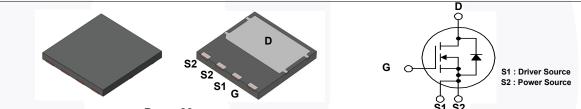


FCMT199N60 N-Channel SuperFET[®] II MOSFET

600 V, 20.2 A, 199 m Ω

Features

- 650 V @ T_J = 150°C
- R_{DS(on)} = 170 mΩ (Typ.)
- Ultra Low Gate Charge (Typ. Q_g = 57 nC)
- Low Effective Output Capacitance (Typ. C_{oss(eff.)} = 160 pF)
- 100% Avalanche Tested
- RoHS Compliant


Applications

- Server and Telecom Power Supplies
- Solar Inverters
- Adaptors

Description

SuperFET[®] II MOSFET is Fairchild Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently, SuperFET II MOSFET is very suitable for the switching power applications such as server/telecom power, adaptor and solar inverter applications.

The Power88 package is an ultra-slim surface-mount package (1 mm high) with a low profile and small footprint (8x8 mm²). SuperFET II MOSFET in a Power88 package offers excellent switching performance due to lower parasitic source inductance and separated power and drive sources. Power88 offers Moisture Sensitivity Level 1 (MSL 1).

Power88

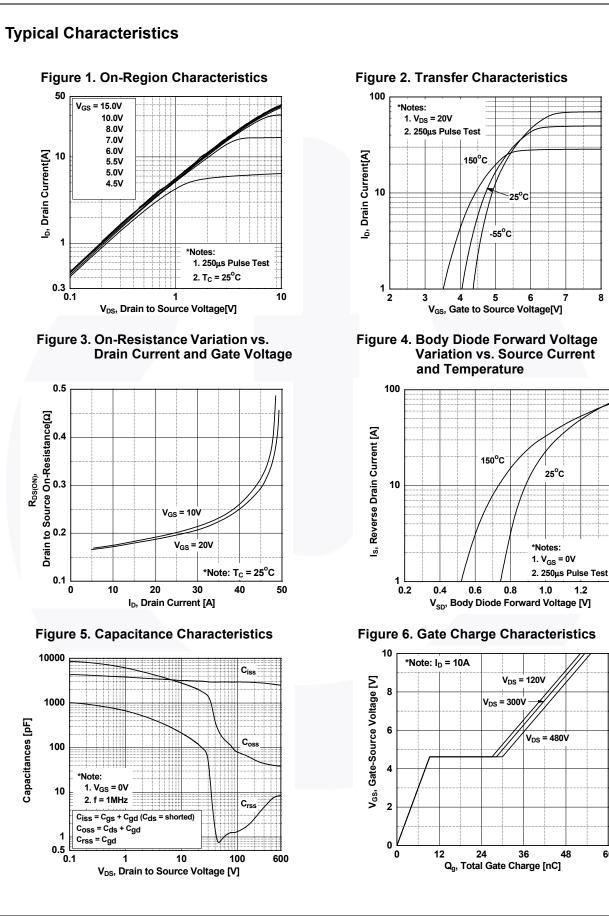
Absolute Maximum Ratings $T_C = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter		FCMT199N60	Unit		
V _{DSS}	Drain to Source Voltage		600	V		
V _{GSS}		-DC	-DC		V	
	Gate to Source Voltage	-AC	(f > 1 Hz)	±30	v	
I _D	Drain Current	-Continuous (T _C = 25 ^o C)		20.2	•	
		-Continuous ($T_C = 100^{\circ}C$)		12.7	Α	
I _{DM}	Drain Current	- Pulsed	(Note 1)	60.6	Α	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		400	mJ		
I _{AR}	Avalanche Current (Note 1)		4.0	Α		
E _{AR}	Repetitive Avalanche Energy (Note 1)		2.1	mJ		
Peak Diode Recovery dv/dt			(Note 3)	20	V/ns	
dv/dt	MOSFET dv/dt			100	V/ns	
P _D	Deven Dissignation	$(T_{C} = 25^{\circ}C)$		208	W	
	Power Dissipation	- Derate above 25°C		1.67	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-50 to +150	°C	
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds		econds	300	°C	

Thermal Characteristics

Symbol	Parameter	FCMT199N60	Unit	
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	0.6	°C/W	
$R_{\theta JA}$	A Thermal Resistance, Junction to Ambient (* 1 in ² pad of 2 oz copper), Max.		0/10	

Device Ma	arking	Device	Pack	kage	Reel Size	Ta	ape Widt	h	Quanti	ty
FCMT19	9N60	FCMT199N60	PQF	N88	-		-		3000	
Electrica	I Char	acteristics T _c = 2	25ºC unless	otherwise	noted.					
Symbol		Parameter			Test Conditions		Min.	Тур.	Max.	Unit
Off Charac	teristic	9								
		5		V = 0	1 - 10 = 10 = 10	2500	600			
BV _{DSS}	V _{DSS} Drain to Source Breakdown Voltage		Itage	$V_{GS} = 0 V, I_D = 10 mA, T_C = 25^{\circ}C$ $V_{GS} = 0 V, I_D = 10 mA, T_C = 150^{\circ}C$		650	-	-	V	
∆BV _{DSS}	Breakdo	own Voltage Temperatu	re							
$/\Delta T_J$	Coefficie			I _D = 10 n	nA, Referenced to 2	5°C	-	0.67	-	V/ºC
1	Zoro Co	to Voltago Drain Curro	Desia Ourrent		V _{DS} = 480 V, V _{GS} = 0 V		-	-	1	^
DSS	Zelo Ga	ate Voltage Drain Currei	in and a second s	V_{DS} = 480 V, V_{GS} = 0 V, T_{C} = 125°C		-	-	10	μA	
GSS	Gate to	Body Leakage Current		$V_{GS} = \pm 2$	20 V, V _{DS} = 0 V		-	-	±100	nA
On Charac	toriotio	_								
							~ -			
V _{GS(th)}		nreshold Voltage			$_{\rm DS}$, $I_{\rm D}$ = 250 μ A		2.5	-	3.5	V
R _{DS(on)}		rain to Source On Resi	stance		$V, I_D = 10 A$		-	0.170	0.199	Ω
9 _{FS}	Forward	d Transconductance	_	$v_{\rm DS} = 20$	0 V, I _D = 10 A		-	20	-	S
Dynamic C	haracte	eristics								
C _{iss}	1	Input Capacitance				-	2220	2950	pF	
C _{oss}		Capacitance			_{DS} = 100 V, V _{GS} = 0 V		-	1630	2165	pF
C _{rss}	-	e Transfer Capacitance		f = 1 MHz		-	85	-	pF	
C _{oss}		t Capacitance		V _{DS} = 38	30 V, V _{GS} = 0 V, f = 1	.0 MHz	-	42	-	pF
C _{oss} eff.	-	ve Output Capacitance		$V_{DS} = 0 V \text{ to } 480 V, V_{GS} = 0 V$		-	160	-	pF	
Q _{g(tot)}		ate Charge at 10V		-	30 V, I _D = 10 A		-	57	74	nC
Q _{gs}		Source Gate Charge		$V_{GS} = 10 V$		-	9	-	nC	
Q _{gd}	Gate to	Drain "Miller" Charge				(Note 4)	-	21	-	nC
ESR	Equivale	ent Series Resistance		f = 1 MHz		-	1	-	Ω	
	0									
Switching				-				1	1	
d(on)		Furn-On Delay Time				-	-	20	50	ns
r		Rise Time		V_{DD} = 380 V, I _D = 10 A V_{GS} = 10 V, R _g = 4.7 Ω		- /	10	30	ns	
d(off)		f Delay Time				-	-	64	138	ns
f	Turn-Off	f Fall Time				(Note 4)	-	5	20	ns
Drain-Sour	ce Dioc	de Characteristics								
	-			e Forward	Current		-	-	20.2	Α
<u>s</u>	Maximum Continuous Drain to Source Did Maximum Pulsed Drain to Source Dide F					_	-	60.6	A	
sм V _{SD}		rain to Source Diode Forward Voltage		$V_{GS} = 0 \text{ V}, \text{ I}_{SD} = 10 \text{ A}$		-	-	1.2	V	
rsD trr		Recovery Time		$V_{GS} = 0 V, I_{SD} = 10 A$ $V_{GS} = 0 V, I_{SD} = 10 A$		-	320	-	ns	
		Recovery Charge		$V_{GS} = 0 V, I_{SD} = 10 A$ $dI_{F}/dt = 100 A/\mu s$		-	5.1	-	μC	
Q _{rr}										


FCMT199N60 — N-Channel SuperFET[®] II MOSFET

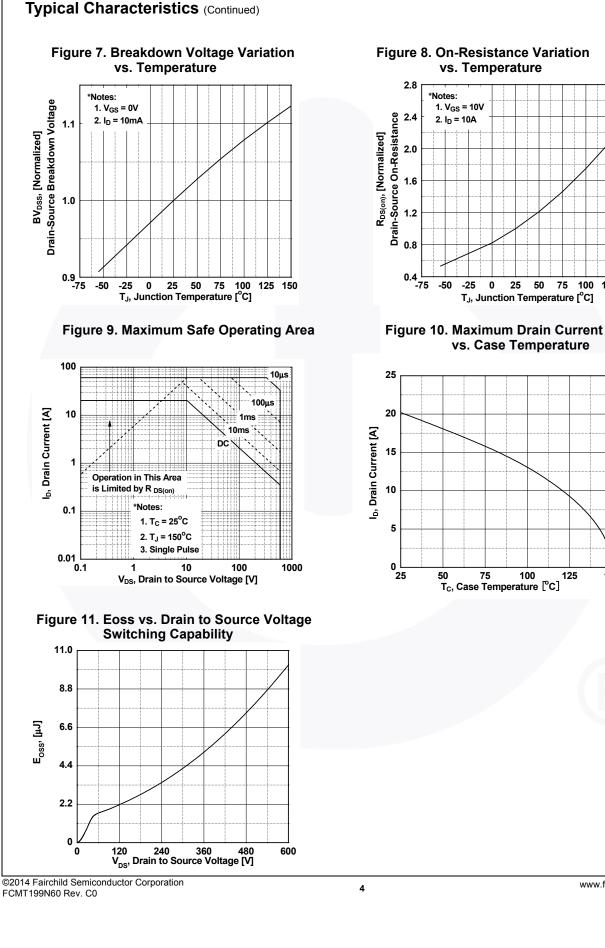
7

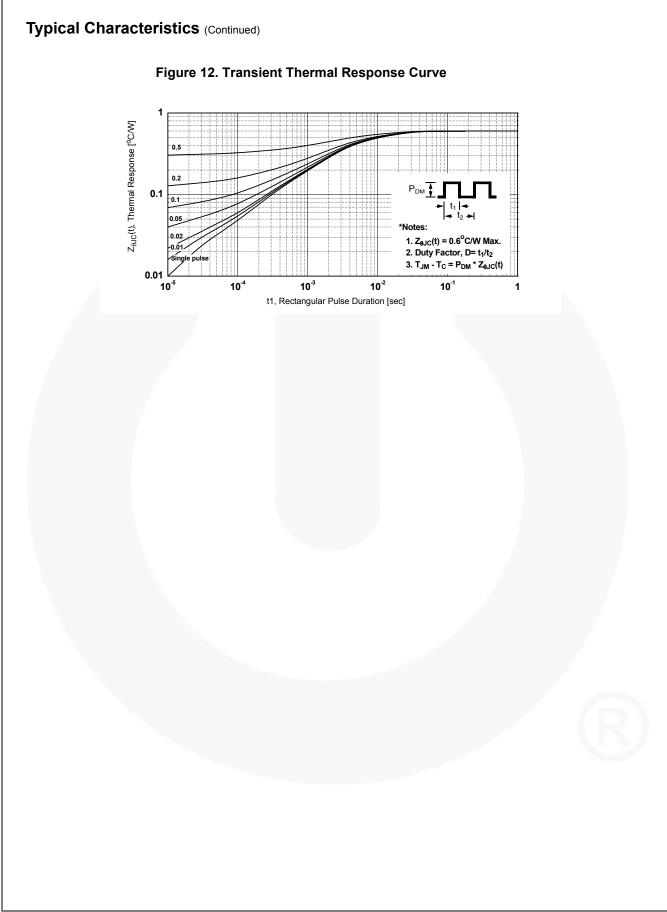
1.2

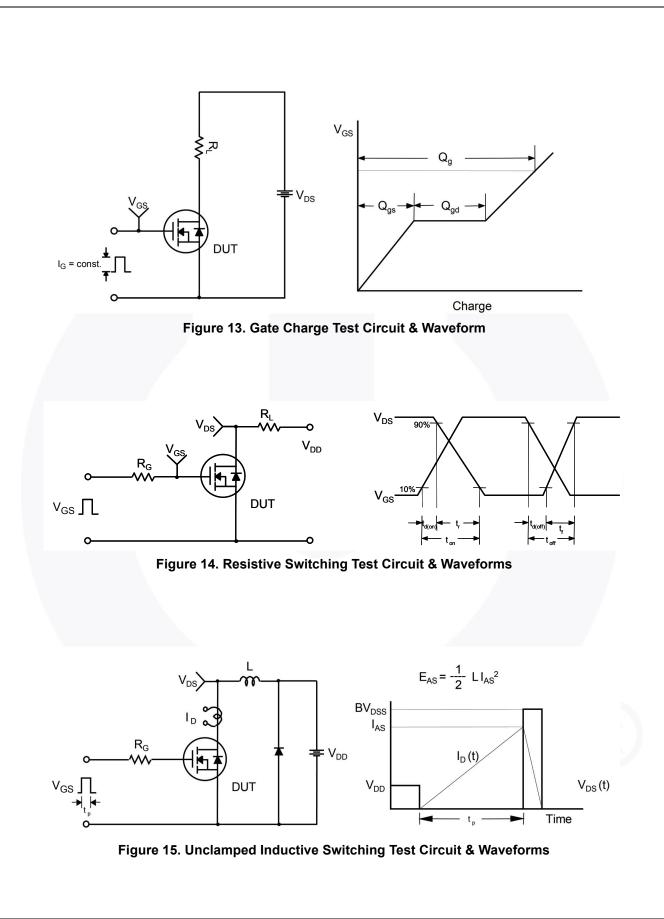
1.4

8

Figure 2. Transfer Characteristics


©2014 Fairchild Semiconductor Corporation FCMT199N60 Rev. C0


60


48

100 125 150

FCMT199N60 — N-Channel SuperFET[®] II MOSFET

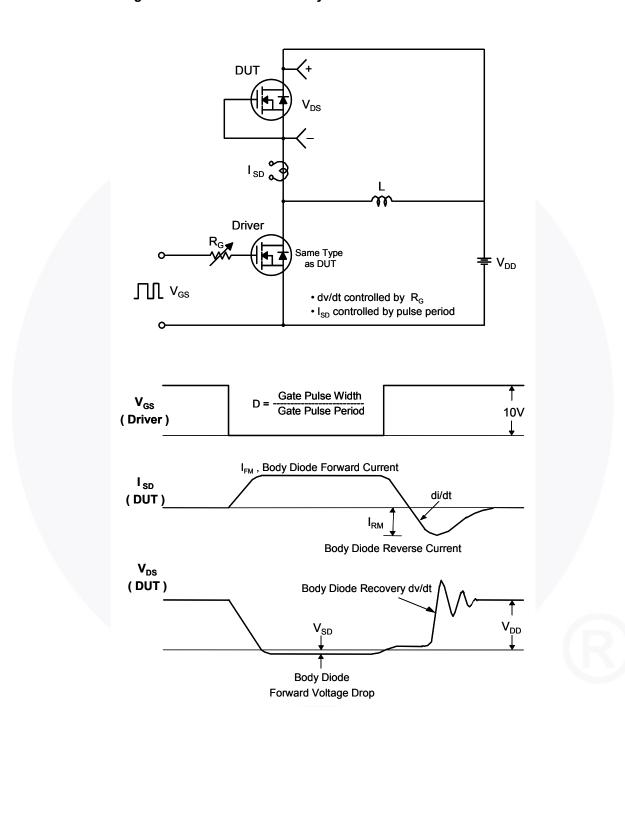
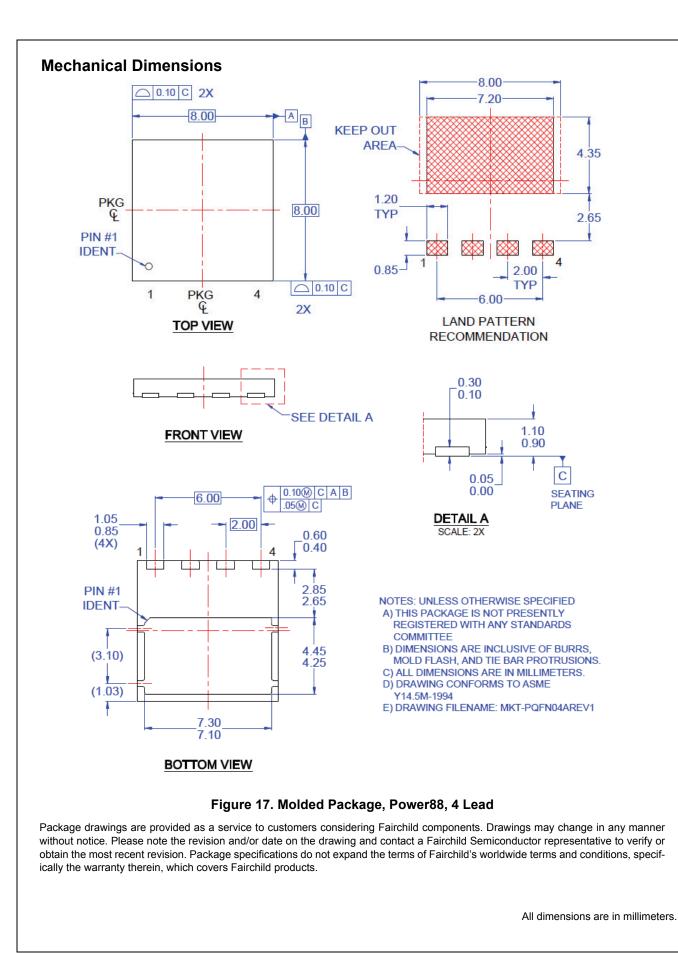



Figure 16. Peak Diode Recovery dv/dt Test Circuit & Waveforms

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

intended to be an exhaustive list o	an such trauemarks.		
AccuPower TM AX-CAP [®] * BitSiC TM Build it Now TM CorePLUS TM CorePOWER TM CROSSVOLT TM CTL TM CUITENT Transfer Logic TM DEUXPEED [®] Dual Cool TM EcoSPARK [®] EfficentMax TM ESBC TM EfficentMax TM ESBC TM Fairchild [®] Fairchild [®] Fairchild [®] Fairchild [®] Fact [®] FACT [®] FAST [®] FastvCore TM FETBench TM	F-PFS™ FRFET® Global Power Resource SM Green FPS™ Green FPS™ Green FPS™ Grow FPS™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Lo and Better™ MegaBuck™ MICROCOUPLER™ MicroPak™ MicroPak™ MicroPak™ MicroPak2 MicroPak2	Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM® STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-6 SuperSOT™-8 SupreMOS®	Sync-Lock™ EGENERAL TinyBoost® TinyBuck® TinyCalc™ TinyLogic® TINYOPTO™ TinyPOWer™ TinyPWM™ TinyPWM™ TranSiC™ TriFault Detect™ TRUECURRENT®* µSerDes™ UHC® UHC® UHC® UHC® UHC® UHCR VisualMax™ VoltanePlus™
FastvCore™			

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Term

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.