NPN Silicon Power Darlington Transistors

The Darlington transistors are designed for high-voltage power switching in inductive circuits.

Features

• These Devices are Pb-Free and are RoHS Compliant

Applications

- Small Engine Ignition
- Switching Regulators
- Inverters
- Solenoid and Relay Drivers
- Motor Controls

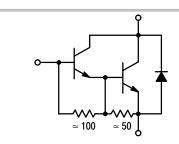
MAXIMUM RATINGS

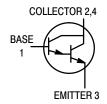
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO(sus)}	400	Vdc
Collector-Emitter Voltage	V _{CEV}	800	Vdc
Emitter-Base Voltage	V _{EB}	8	Vdc
Collector Current – Continuous – Peak (Note 1)	I _C	8 16	Adc
Base Current – Continuous – Peak (Note 1)	I _B I _{BM}	2.5 5	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	2 0.016	W W/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	100 0.8	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	1.25	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	62.5	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 5 Seconds	TL	275	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


1. Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%.



ON Semiconductor®

http://onsemi.com

POWER DARLINGTON **TRANSISTORS** 8 AMPERES, 400 VOLTS **100 WATTS**

MARKING DIAGRAM

1

D²PAK CASE 418B STYLE 1

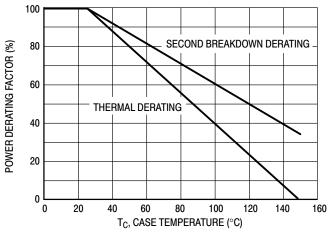
B5742 = Specific Device Code = Assembly Location

= Year ww = Work Week = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
MJB5742T4G	D ² PAK (Pb-Free)	800 / Tape & Reel

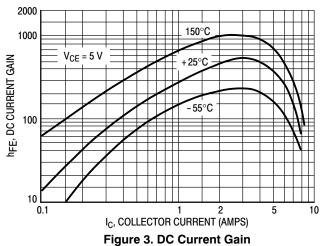
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS (Note 2)					'
Collector-Emitter Sustaining Voltage (I _C = 50 mA, I _B = 0)	V _{CEO(sus)}	400	_	-	Vdc
Collector Cutoff Current (V_{CEV} = Rated Value, $V_{BE(off)}$ = 1.5 Vdc) (V_{CEV} = Rated Value, $V_{BE(off)}$ = 1.5 Vdc, T_C = 100°C)	I _{CEV}	- -	- -	1 5	mAdc
Emitter Cutoff Current (V _{EB} = 8 Vdc, I _C = 0)	I _{EBO}	-	_	75	mAdc
SECOND BREAKDOWN	,				
Second Breakdown Collector Current with Base Forward Biased	I _{S/b}	See Figure 6			
Clamped Inductive SOA with Base Reverse Biased	RBSOA	See Figure 7			
ON CHARACTERISTICS (Note 2)					
DC Current Gain ($I_C = 0.5$ Adc, $V_{CE} = 5$ Vdc) ($I_C = 4$ Adc, $V_{CE} = 5$ Vdc)	h _{FE}	50 200	100 400	_ _	_
Collector–Emitter Saturation Voltage (I_C = 4 Adc, I_B = 0.2 Adc) (I_C = 8 Adc, I_B = 0.4 Adc) (I_C = 4 Adc, I_B = 0.2 Adc, I_C = 100°C)	V _{CE(sat)}	- - -	- - -	2 3 2.2	Vdc
Base–Emitter Saturation Voltage (I_C = 4 Adc, I_B = 0.2 Adc) (I_C = 8 Adc, I_B = 0.4 Adc) (I_C = 4 Adc, I_B = 0.2 Adc, I_C = 100°C)	V _{BE(sat)}	- - -	- - -	2.5 3.5 2.4	Vdc
Diode Forward Voltage (Note 3) (I _F = 5 Adc)	V _f	-	-	2.5	Vdc
SWITCHING CHARACTERISTICS Typical Resistive Load (Table 1)		•	1	•	1

Typical Resistive Load (Table 1)						
Delay Time		t _d	-	0.04	-	μS
Rise Time	$(V_{CC} = 250 \text{ Vdc}, I_{C(pk)} = 6 \text{ A} $ $I_{B1} = I_{B2} = 0.25 \text{ A}, t_p = 25 \mu s,$	t _r	-	0.5	-	μS
Storage Time	l _{B1} = l _{B2} = 0.25 A, t _p = 25 μs, Duty Cycle ≤ 1%)	t _s	-	8	_	μS
Fall Time		t _f	-	2	-	μS
Inductive Load, Clamped (Table 1)						
Voltage Storage Time	(I _{C(pk)} = 6 A, V _{CE(pk)} = 250 Vdc	t _{sv}	-	4	-	μS
Crossover Time	$(I_{C(pk)} = 6 \text{ A}, V_{CE(pk)} = 250 \text{ Vdc}$ $I_{B1} = 0.06 \text{ A}, V_{BE(off)} = 5 \text{ Vdc})$	t _c	-	2	-	μS

Pulse Test: Pulse Width 300 μs, Duty Cycle = 2%.
 The internal Collector–to–Emitter diode can eliminate the need for an external diode to clamp inductive loads. Tests have shown that the Forward Recovery Voltage (V_f) of this diode is comparable to that of typical fast recovery rectifiers.


TYPICAL CHARACTERISTICS

I_{C(pk)} V_{CE(pk)} 90% V_{CE(pk} 90% I_C lc_ 10% V_{CE(pk)} V_{CE}. 2% I_C 90% I_{B1} $I_{C(pk)}$ TIME

Figure 1. Power Derating

Figure 2. Inductive Switching Measurements

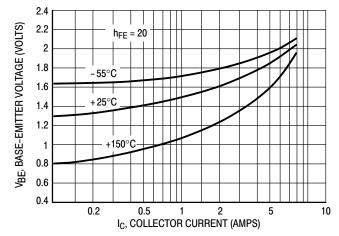


Figure 4. Base-Emitter Voltage

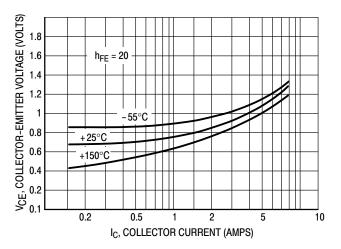
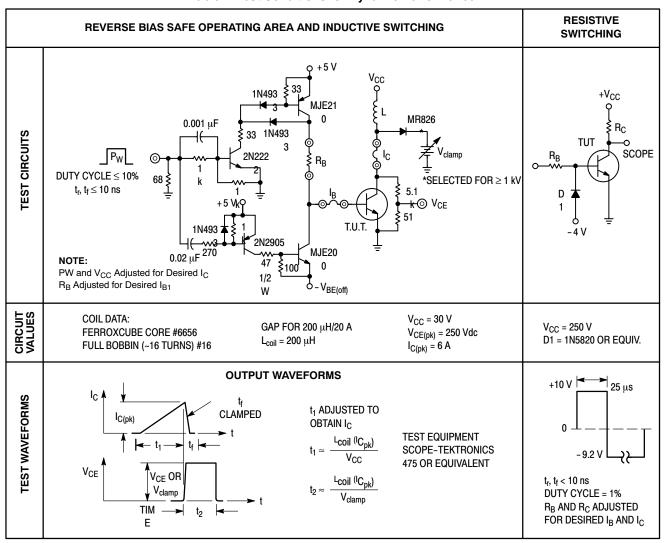
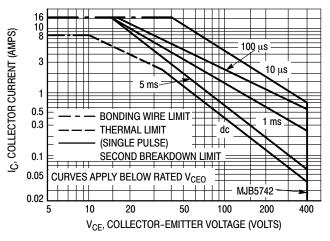



Figure 5. Collector-Emitter Saturation Voltage

Table 1. Test Conditions for Dynamic Performance

SAFE OPERATING AREA INFORMATION

FORWARD BIAS


There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 6 is based on $T_C = 25\,^{\circ}C$; $T_{J(pk)}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $T_C \ge 25\,^{\circ}C$. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 6 may be found at any case temperature by using the appropriate curve on Figure 1.

REVERSE BIAS

For inductive loads, high voltage and high current must be sustained simultaneously during turn-off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage-current condition allowable during reverse biased turnoff. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 7 gives the complete RBSOA characteristics.

The Safe Operating Area figures shown in Figures 6 and 7 are specified ratings for these devices under the test conditions shown.

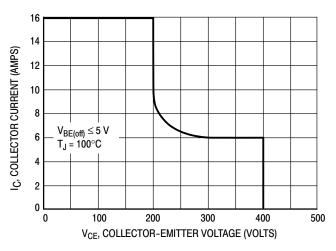


Figure 6. Forward Bias Safe Operating Area

Figure 7. Reverse Bias Safe Operating Area

RESISTIVE SWITCHING PERFORMANCE

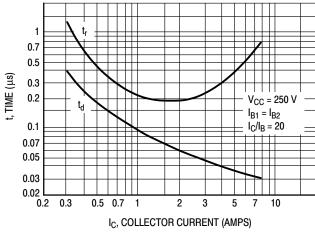


Figure 8. Turn-On Time

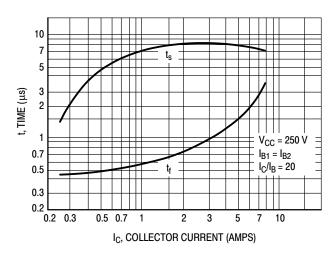
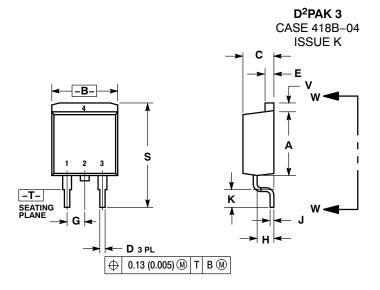
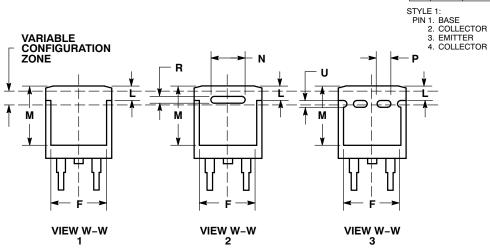
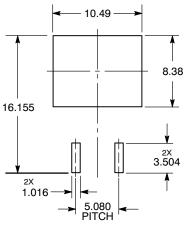



Figure 9. Turn-Off Time


PACKAGE DIMENSIONS


NOTES:

- NOTES:
 1. DIMENSIONING AND TOLERANCING
 PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. 418B-01 THRU 418B-03 OBSOLETE,
 NEW STANDARD 418B-04.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.340	0.380	8.64	9.65
В	0.380	0.405	9.65	10.29
С	0.160	0.190	4.06	4.83
D	0.020	0.035	0.51	0.89
E	0.045	0.055	1.14	1.40
F	0.310	0.350	7.87	8.89
G	0.100 BSC		2.54	BSC
Н	0.080	0.110	2.03	2.79
J	0.018	0.025	0.46	0.64
K	0.090	0.110	2.29	2.79
L	0.052	0.072	1.32	1.83
М	0.280	0.320	7.11	8.13
N	0.197 REF		5.00 REF	
Р	0.079 REF		2.00 REF	
R	0.039	REF	0.99 REF	
S	0.575	0.625	14.60	15.88
V	0.045	0.055	1.14	1.40

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative