

SEMITOP® 3

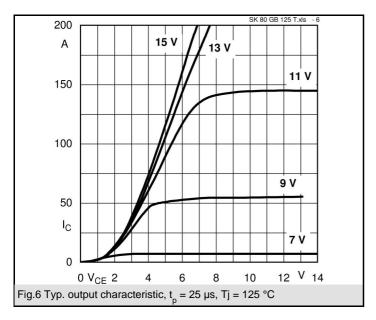
IGBT Module

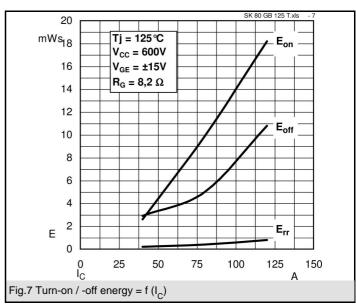
SK 80 GB 125 T

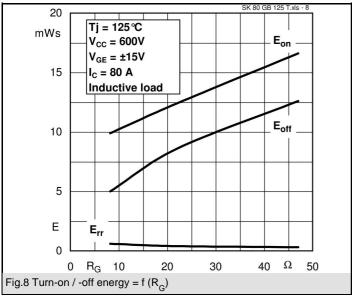
Preliminary Data

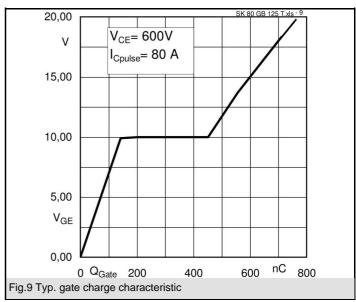
Features

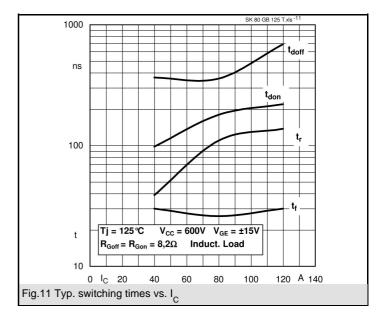
- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonding Aluminium Nitride ceramic (DBC)
- · High short circuit capability
- Low tail current with low temperature dependence
- Integrated NTC temperature sensor

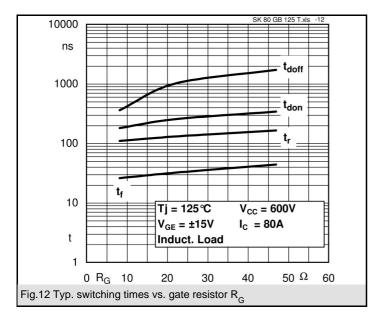

Typical Applications

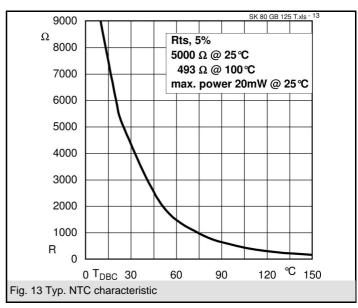

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS
- Welding
- 1) $V_{CE,sat}$, V_F = chip level value

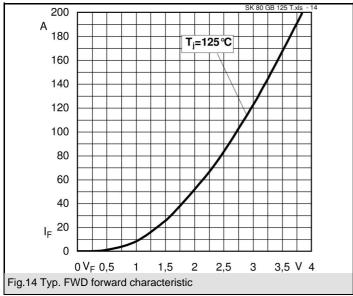

Absolute	Maximum Ratings	T_s = 25 °C, unless otherwise	T _s = 25 °C, unless otherwise specified				
Symbol	Conditions	Values	Units				
IGBT		•					
V_{CES}		1200	V				
V_{GES}		± 20	V				
I _C	T _s = 25 (80) °C;	85 (55)	Α				
I _{CM}	$t_p < 1 \text{ ms; } T_s = 25 (80) ^{\circ}\text{C;}$	170 (110)	Α				
T _j		- 40 + 150	°C				
Inverse/Freewheeling CAL diode							
I _F	T _s = 25 (80) °C;	90 (60)	Α				
$I_{FM} = -I_{CM}$	$t_p < 1 \text{ ms}; T_s = 25 (80) ^{\circ}\text{C};$	180 (120)	Α				
T _j		- 40 + 150	°C				
T _{stg}		- 40 + 125	°C				
T _{sol}	Terminals, 10 s	260	°C				
V _{isol}	AC 50 Hz, r.m.s. 1 min. / 1 s	2500 / 3000	V				

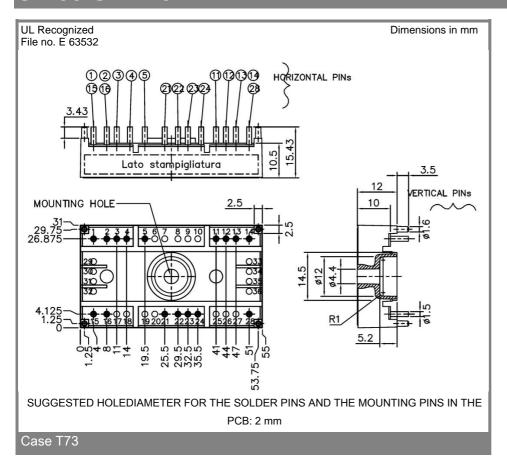

Characteristics		T _s = 25 °C, unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units			
IGBT			7.					
V _{CE(sat)}	I _C = 75 A, T _i = 25 (125) °C		3,2 (3,85)	3,7	V			
V _{GE(th)}	$V_{CE} = V_{GE}$; $I_{C} = 0,003 \text{ A}$	4,5	5,5	6,5	V			
C _{ies}	$V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}; 1 \text{ MHz}$		5,1		nF			
$R_{th(j-s)}$	per IGBT			0,32	K/W			
	per module				K/W			
	under following conditions:							
t _{d(on)}	$V_{CC} = 600 \text{ V}$, $V_{GE} = \pm 15 \text{ V}$		180		ns			
t _r	I _C = 80 A, T _j = 125 °C		110		ns			
t _{d(off)}	$R_{Gon} = R_{Goff} = 8.2 \Omega$		358		ns			
t _f			26		ns			
E _{on} + E _{off}	Inductive load		15		mJ			
Inverse/Freewheeling CAL Diode								
$V_F = V_{EC}$	I _F = 55 A; T _i = 25 (125) °C		2 (1,8)		V			
V _(TO)	T _i = (125) °C		(1,2)		V			
r _T	$T_{j} = (125) ^{\circ}C$		(11)		mΩ			
$R_{th(j-s)}$				0,65	K/W			
	under following conditions:							
I _{RRM}	$I_F = 50 \text{ A}; V_R = 600 \text{ V}$		40		Α			
Q_{rr}	$dI_F/dt = -800 A/\mu s$		8		μC			
E _{off}	V _{GE} = 0 V; T _j = 125 °C		1		mJ			
Mechanical data								
M1	mounting torque	2,25		2,5	Nm			
w			30		g			
Case	SEMITOP® 3		T 73					

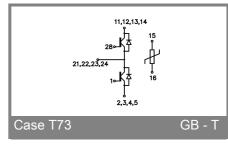












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.