

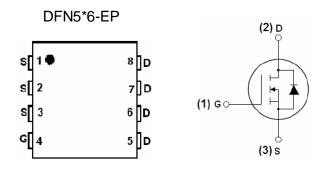
Description

ACE7408B uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

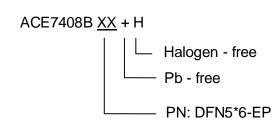
Features

- V_{DS}=30V, I_D=80A
- $R_{DS(ON)1}@V_{GS}=4.5V$, TYP $4m\Omega$

Absolute Maximum Ratings


Parameter	Symbol	Max	Unit		
Drain-Source Voltage		V_{DSS}	30	V	
Gate-Source Voltage		V_{GSS}	±20	V	
Drain Current (Continuous)*AC	T _A =25°C	1	80	Λ	
Drain Current (Continuous) AC	T _A =100°C	l _D	56	Α	
Drain Current (Pulsed)*B		I _{DM}	220	Α	
Power Dissipation	T _A =25°C	T _A =25°C P _D 55 W			
Operating temperature / storage temperature		T _J /T _{STG}	-55~150	$^{\circ}\!\mathbb{C}$	

A: The value of $R_{\theta JA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.


B: Repetitive rating, pulse width limited by junction temperature.

C: The current rating is based on the t≤ 10s junction to ambient thermal resistance rating.

Packaging Type

Ordering information

Electrical Characteristics

 $T_A=25^{\circ}$ C, unless otherwise specified.

「A=25℃, unless otherwise specified.	0 1 1	T (0 11/1		_		
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
		Static	1	1	- I	
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	$V_{GS} = 0V, I_D = 250 \mu A$	30			V
Zero Gate Voltage Drain Current	I _{DSS1}	$V_{DS} = 30V, V_{GS} = 0V$			1	μΑ
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{GS} = V_{DS}$, $I_{DS} = 250 \mu A$	1	1.3	2	V
Gate Leakage Current	I_{GSS}	V_{GS} = ±20V , V_{DS} =0V			±100	nΑ
Drain-Source On-state	R	$V_{GS} = 10V$, $I_D = 20A$		2.7	3.5	mΩ
Resistance	R _{DS(on)}	$V_{GS} = 4.5V$, $I_D = 10A$		4	5.5	
Forward Trans Conductance	g fs	V_{DS} = 10 V , I_{D} = 20 A	22			S
Diode Forward Voltage	V_{SD}	I_{SD} = 10A , V_{GS} = 0V			1.2	V
Diode Forward Current	Is				80	Α
		Switching				
Total Gate Charge	Q_g	$V_{DS} = 15V, I_{D} = 20A,$		28		nC
Gate-Source Charge	Q_gs	$V_{DS} = 15V, I_D = 20A,$ $V_{GS} = 10V$		7		nC
Gate-Drain Charge	Q_gd	V _{GS} = 10V		11		nC
Turn-on Delay Time	t _{d(on)}			21		ns
Turn-on Rise Time	t_r	$V_{DD} = 15V, R_{L} = 15A,$		17		ns
Turn-off Delay Time	$t_{d(off)}$	V_{GS} = 10 V , R_{GEN} = 2.5 Ω		72		ns
Turn-off Fall Time	t_f			21		ns
		Dynamic				
Input Capacitance	C_{iss}	\/ _15\/\/ _ 0\/		2800		pF
Output Capacitance	C_{oss}	V_{DS} =15V, V_{GS} = 0V, f= 1.0MHz		660		рF
Reverse Transfer Capacitance	C_{rss}	I— T.OIVII IZ		250		pF

ACE7408B

N-Channel Enhancement Mode Power MOSFET

Typical Performance Characteristics

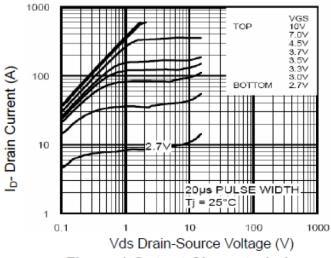


Figure 1 Output Characteristics

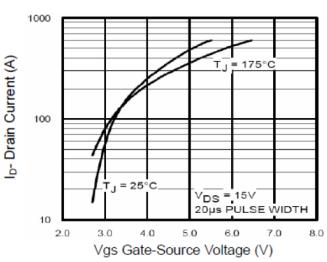


Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

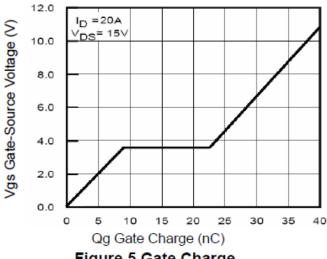


Figure 5 Gate Charge

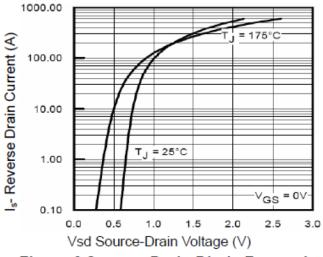


Figure 6 Source- Drain Diode Forward

C Capacitance (pF)

ACE7408B N-Channel Enhancement Mode Power MOSFET

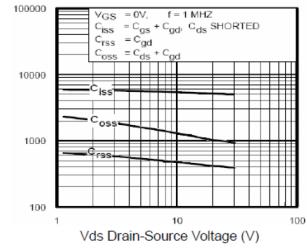


Figure 7 Capacitance vs Vds

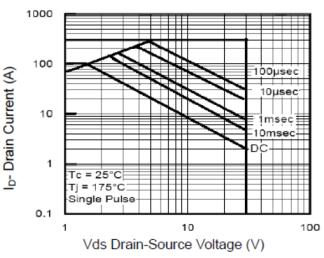


Figure 8 Safe Operation Area

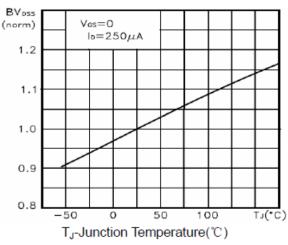


Figure 9 BV_{DSS} vs Junction Temperature

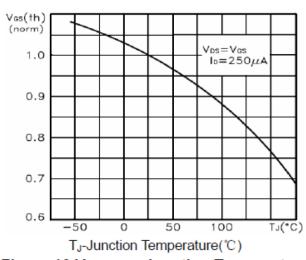
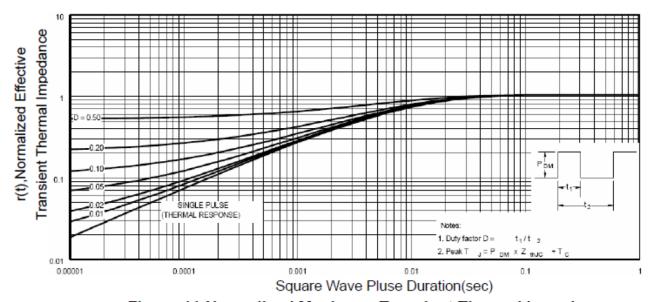
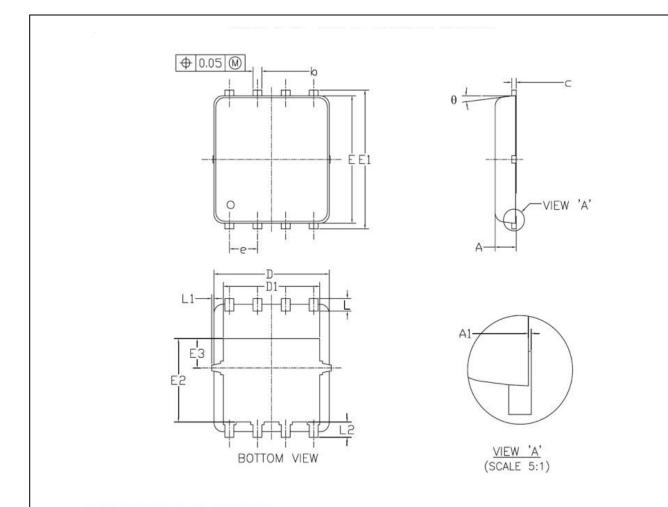
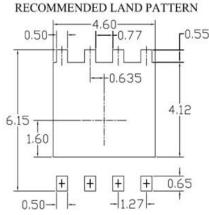


Figure 10 V_{GS(th)} vs Junction Temperature


Figure 11 Normalized Maximum Transient Thermal Impedance

Packing Information

DFN5*6-EP

SYMBOLS	DIMENSIONS IN MILLIMETERS			DIMENSIONS IN INCHES			
SYMBOLS	MIN	NOM	MAX	MIN	MIN NOM		
A	0.85	0.95	1.00	0.033	0.037	0.039	
A1	0.00	-	0.05	0.000	_	0.002	
b	0.30	0.40	0.50	0.012	0.016	0.020	
c	0.15	0.20	0.25	0.006	0.008	0.010	
D	5. 20 BSC			0. 205 BSC			
D1	4. 35 BSC			0.171 BSC			
E	5. 55 BSC			0, 219 BSC			
E1	6. 05 BSC			0. 238 BSC			
E2	3. 625 BSC			0.143 BSC			
E3	1. 275 BSC			0.050 BSC			
e	1. 27 BSC			0.050 BSC			
L	0.45	0.55	0.65	0.018	0.022	0.026	
L1	0		0.15	0		0.006	
L2	0. 68 REF			0.027 REF			
θ	0°		10°	0°	250	10°	

NOTE

- UNIT: mm
- 1. PACKAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS.
 MOLD FLASH AT THE NON-LEAD SIDES SHOULD BE LESS THAN 6 MILS EACH.
- CONTROLLING DIMENSION IS MILLIMETER.
 CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/