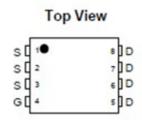
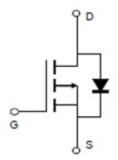
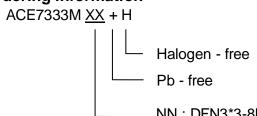


P-Channel 30-V (D-S) MOSFET


Description


The ACE7409B uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge. This device is suitable for use as a high side switch in SMPS and general purpose applications.

Features


- V_{DS} (V) = -30 V
- $I_D = -30A \text{ (at } V_{GS} = -10V)$
- $< 14m\Omega (V_{GS}=-10V)$
- < $20m\Omega (V_{GS}=-4.5V)$

Packaging Type

Ordering information

Absolute Maximum Ratings @TA=25℃ unless otherwise noted

Param	Symbol	Limit	Units		
Drain-Source	V_{DSS}	30	V		
Gate-Source	V_{GSS}	±20	V		
Drain Current (Continuous) ^a	T _A =25 °C	ı	30	А	
	T _A =70 °C	l _D	22		
Drain Currer	I _{DM}	82			
Power Dissipation ^b	T _A =25 °C	P _D	25	W	
	T _A =70 °C	r _D	16		
Operating Temperature/ Storage Temperature		$T_{J,}T_{STG}$	-55 to 150	°C	

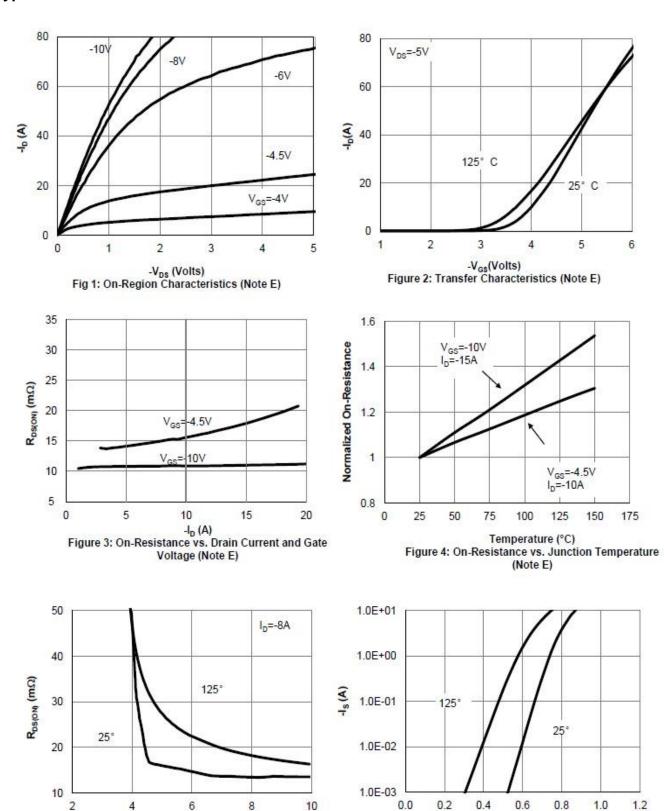
P-Channel 30-V (D-S) MOSFET

Electrical Characteristics @TA=25°C unless otherwise noted

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Static							
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	V _{GS} =0V, I _D =-250uA	-30			٧	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-30V, V _{GS} =0V			-1	uA	
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{GS} = V_{DS}, I_{DS} = -250 \mu A$	-1	-1.3	-3	V	
Gate Leakage Current	$I_{\rm GSS}$	$V_{GS} = \pm 20 \text{V}, V_{DS} = 0 \text{V}$			±100	nA	
Drain-Source On-state		V _{GS} =-10V,I _D =-15A		11	14	mΩ	
Resistance	$R_{DS(ON)}$	V _{GS} =-4.5V,I _D =-10A		13	20		
Forward Transconductance	g _{FS}	V_{DS} =-5 V , I_{D} =-8 A		20		S	
Diode Forward Voltage	V_{SD}	I _S =-2.1A ,V _{GS} =0V		-0.8	-1.3	V	
Switching							
Total Gate Charge	Q_g	\/ 10\/\/ 15\/		68.12		nC	
Gate-Source Charge	Q_gs	V_{GS} =-10V, V_{DS} =-15V I_{D} =-11A		8			
Gate-Drain Charge	Q_gd	10-117		10.12			
Turn-On Delay Time	$t_{d(on)}$	10)()(20.4			
Turn-On Rise Time	t_f	V _{GEN} =-10V,V _{DS} =-15V		8.96		ns	
Turn-Off Delay Time	$t_{d(off)}$	R_L =15Ω, R_{GEN} =6Ω, I_D =-1A		131.8			
Turn-Off Fall Time	t_{f}	10 17.1		47.2			
Dynamic							
Input Capacitance	C_{iss}	\/ 0\/ \/ 0\/		3204.2		pF	
Output Capacitance	C_{oss}	V _{GS} =0V ,V _{DS} =8V f=1MHz		492			
Reverse Transfer Capacitance	C_{rss}	1-1101112		415			

Note:

- A. The maximum current rating is package limited.
- B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
- c. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep initial TJ =25°C.
- D. The static characteristics in Figures 1 to 6 are obtained using <300ms pulses, duty cycle 0.5% max.
- E. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating.
- F. The maximum current rating is package limited.
- G. These tests are performed with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with TA=25°C



P-Channel 30-V (D-S) MOSFET

Typical Electrical And Thermal Characteristics

-V_{GS} (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage

(Note E)

-V_{SD} (Volts) Figure 6: Body-Diode Characteristics (Note E)

P-Channel 30-V (D-S) MOSFET

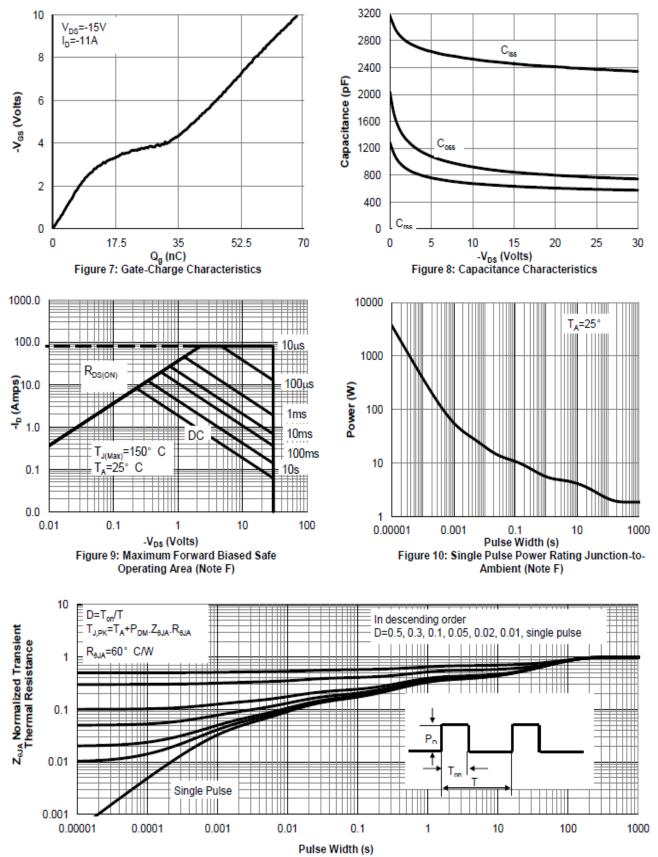
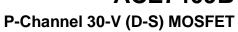
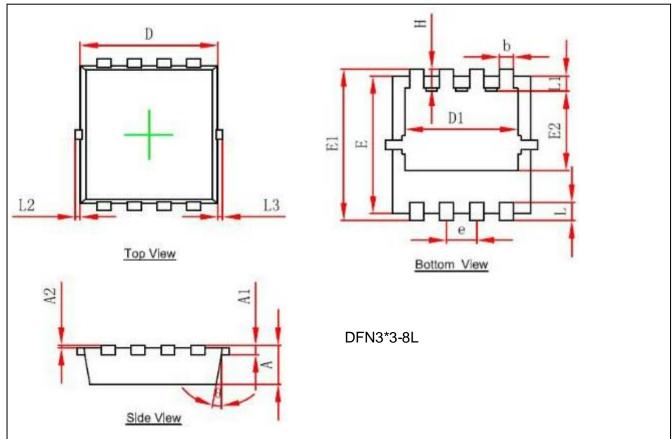




Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

Packing Information DFN3*3-8L

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	0.650	0.850	0.026	0.033	
A1	0.152REF		0.006REF		
A2	0~0.05		0~0.002		
D	2.900	3.100	0.114	0.122	
D1	2.300	2.600	0.09	0.102	
E	2.900	3.100	0.114	0.122	
E1	3.150	3.450	0.124	0.136	
E2	1.535	1.935	0.060	0.076	
b	0.200	0.400	0.008	0.016	
е	0.50	0.750	0.022	0.030	
L	0.300	0.500	0.012	0.020	
L1	0.180	0.480	0.007	0.019	
L2	0~0.100		0~0.004		
L3	0~0.100		0~0.004		
Н	0.315	0.515	0.012	0.020	
θ	9°	13°	9°	13°	

ACE7409B P-Channel 30-V (D-S) MOSFET

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/