X2PT IGBT Module

6-Pack + NTC

Part number

MIXG240W1200TEH

$$
\begin{array}{ll}
\mathbf{V}_{\mathrm{CEs}} & =1200 \mathrm{~V} \\
\mathrm{I}_{\mathrm{C} 5} & =370 \mathrm{~A} \\
\mathbf{V}_{\mathrm{CE}(\text { sat })} & =1.7 \mathrm{~V}
\end{array}
$$

펱ํ2873

Features / Advantages:

- X2PT - 2nd generation Xtreme light Punch Through
- Tvjm $=175^{\circ} \mathrm{C}$
- Easy paralleling due to the positive temperature coefficient of the on-state voltage
- Rugged X2PT design results in:
- short circuit rated for $10 \mu \mathrm{sec}$.
- very low gate charge
- low EMI
- square RBSOA @ 2x Ic
- Low $\mathrm{V}_{\mathrm{CE}(\text { sat })}$ and low thermal resistance
- SONIC ${ }^{\text {TM }}$ diode
- fast and soft reverse recovery
- low operating forward voltage

Applications:

- AC motor drives
- Solar inverter
- Medical equipment
- Uninterruptible power supply
- Air-conditioning systems
- Welding equipment
- Switched-mode and resonant-mode power supplies
- Inductive heating, cookers
- Pumps, Fans

Package: E3-Pack

- Isolation Voltage: 4300 V~
- Industry standard outline
- RoHS compliant
- Base plate: Copper internally DCB isolated
- Advanced power cycling

Option:

- Phase Change Material printed on base plate

Inverter IGBT				Ratings			
Symbol	Definitions	Conditions		min.	typ.	max.	
$\mathrm{V}_{\text {ces }}$	collector emitter voltage		$\mathrm{T}_{\mathrm{vJ}}=25^{\circ} \mathrm{C}$			1200	V
$V_{\text {GES }}$	max. DC gate voltage			-20		+20	V
$\mathrm{V}_{\text {GEM }}$	max. transient gate emitter voltage			-30		+30	V
$\mathrm{I}_{\mathrm{c} 25}$	collector current		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			370	A
$\mathrm{I}_{\text {c80 }}$			$\mathrm{T}_{\mathrm{C}}=80^{\circ} \mathrm{C}$			280	A
$\mathrm{I}_{\mathbf{1} 100}$			$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$			240	A
$\mathrm{P}_{\text {tot }}$	total power dissipation		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$			1250	W
$\mathrm{V}_{\text {CE(sat) }}$	collector emitter saturation voltage	$\mathrm{I}_{\mathrm{C}}=200 \mathrm{~A} ; \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v} v}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{vJ}}=150^{\circ} \mathrm{C} \end{aligned}$		$\begin{array}{r} 1.7 \\ 2 \end{array}$	2	V
$\mathrm{V}_{\mathrm{GE} \text { (th) }}$	gate emitter threshold voltage	$\mathrm{I}_{\mathrm{C}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{GE}}=\mathrm{V}_{\mathrm{GE}}$	$\mathrm{T}_{\mathrm{vJ}}=25^{\circ} \mathrm{C}$	5.5		7	V
$\mathrm{I}_{\text {cES }}$	collector emitter leakage current	$\mathrm{V}_{\text {CE }}=\mathrm{V}_{\text {CES }} ; \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{v},}=150^{\circ} \mathrm{C} \end{aligned}$		2	0.2	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {GES }}$	gate emitter leakage current	$\mathrm{V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$				500	nA
R_{G}	internal gate resistance				2.0		Ω
$\begin{aligned} & \mathrm{C}_{\text {iss }} \\ & \mathrm{C}_{\text {oss }} \\ & \mathrm{C}_{\text {rss }} \end{aligned}$	input capacitance output capacitance reverse transfer (Miller) capacitance	$V_{C E}=100 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V} ; f$			10.6		nF pF pF
$\begin{aligned} & \mathbf{Q}_{\mathrm{g}} \\ & \mathbf{Q}_{\mathrm{gs}} \\ & \mathbf{Q}_{\mathrm{gd}} \end{aligned}$	total gate charge gate source charge gate drain (Miller) charge	$\} \mathrm{V}_{\mathrm{CE}}=600 \mathrm{~V} ; \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V} ;$			630		nC nC nC
$t_{\text {d(on) }}$ t_{r} $t_{\text {doff) }}$ t_{t} $E_{\text {on }}$ $E_{\text {off }}$ $E_{\text {rec(off) }}$	urn-on delay time current rise time turn-off delay time current fall time turn-on energy per pulse turn-off energy per pulse reverse recovery losses at turn-off	Inductive switching $\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=600 \mathrm{~V} ; \mathrm{I}_{\mathrm{C}}=200 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GE}}= \pm 15 \mathrm{~V} ; \mathrm{R}_{\mathrm{G}}=3.9 \Omega \end{aligned}$	$\mathrm{T}_{\mathrm{v},}=25^{\circ} \mathrm{C}$				ns ns ns ns mJ mJ mJ
$\mathrm{t}_{\mathrm{d}(\text { (on) }}$ t_{r} $\mathrm{t}_{\mathrm{d} \text { (off) }}$ t_{f} $\mathrm{E}_{\text {on }}$ $\mathrm{E}_{\text {off }}$ $E_{\text {rec(off) }}$	turn-on delay time current rise time turn-off delay time current fall time turn-on energy per pulse turn-off energy per pulse reverse recovery losses at turn-off	Inductive switching $\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=600 \mathrm{~V} ; \mathrm{I}_{\mathrm{C}}=200 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GE}}= \pm 15 \mathrm{~V} ; \mathrm{R}_{\mathrm{G}}=3.9 \Omega \end{aligned}$	$\mathrm{T}_{\mathrm{v} J}=150^{\circ} \mathrm{C}$		$\begin{array}{r} 100 \\ 75 \\ 340 \\ 100 \\ 22 \\ 21 \end{array}$		ns ns ns ns mJ mJ mJ
$\begin{aligned} & \text { RBSOA } \\ & \mathrm{I}_{\mathrm{Cm}} \\ & \hline \end{aligned}$	reverse bias safe operating area	$\begin{aligned} & V_{G E}= \pm 15 \mathrm{~V} ; \mathrm{R}_{\mathrm{G}}=3.9 \Omega \\ & \mathrm{~V}_{\mathrm{CE} \max }=1200 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{v} J}=150^{\circ} \mathrm{C}$			400	A
$\begin{aligned} & \hline \text { SCSOA } \\ & \mathbf{t}_{\mathrm{sc}} \\ & \mathrm{I}_{\mathrm{sc}} \\ & \hline \end{aligned}$	short circuit safe operating area short circuit duration short circuit duration	$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{CEmax}}=1200 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CE}}=900 \mathrm{~V} ; \mathrm{V}_{\mathrm{GE}}= \pm 15 \mathrm{~V} \\ \text { non-repetitive } \end{array}\right.$	$\mathrm{T}_{\mathrm{v} \delta}=150^{\circ} \mathrm{C}$		900	10	$\mu \mathrm{s}$ A
$\begin{aligned} & \mathbf{R}_{\mathrm{th} \mathrm{Jc}} \\ & \mathbf{R}_{\mathrm{th} \mathrm{JH}} \\ & \hline \end{aligned}$	thermal resistance junction to case thermal resistance junction to heatsink	with heatsink compound	setup		0.18	0.12	$\begin{aligned} & \text { K/W } \\ & \text { K/W } \end{aligned}$

Inverter Diode				Ratings			
Symbol	Definitions	Conditions		min.	typ.	max.	
$\mathrm{V}_{\text {RRM }}$	max. repetitive reverse voltage		$\mathrm{T}_{\mathrm{V},}=25^{\circ} \mathrm{C}$			1200	V
$\mathrm{I}_{\mathrm{F} 25}$ $\mathrm{I}_{\text {F80 }}$ $\mathrm{I}_{\mathrm{F} 100}$	forward current		$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=80^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 275 \\ & 205 \\ & 175 \end{aligned}$	A A A
V_{F}	forward voltage	$\mathrm{I}_{\mathrm{F}}=200 \mathrm{~A}$	$\begin{aligned} & \mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{vj}}=150^{\circ} \mathrm{C} \end{aligned}$		1.9	2.2	V
$\mathrm{I}_{\text {R }}$	reverse current * not applicable, see Ices at IGBT	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {RRM }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{v}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{vj}}=150^{\circ} \mathrm{C} \end{aligned}$		*	*	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\begin{aligned} & \mathbf{Q}_{\mathrm{RM}} \\ & \mathrm{I}_{\mathrm{RM}} \\ & \mathbf{t}_{\mathrm{rr}} \\ & \mathrm{E}_{\mathrm{rec}} \end{aligned}$	reverse recovery charge max. reverse recovery current reverse recovery time reverse recovery energy	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=600 \mathrm{~V} \\ & -\mathrm{di} / \mathrm{dt}=3000 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{I}_{\mathrm{F}}=200 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C}$				$\mu \mathrm{C}$ A ns mJ
$\begin{aligned} & \mathbf{Q}_{\mathrm{RM}} \\ & \mathrm{I}_{\mathrm{RM}} \\ & \mathbf{t}_{\mathrm{rr}} \\ & \mathbf{E}_{\mathrm{rec}} \end{aligned}$	reverse recovery charge max. reverse recovery current reverse recovery time reverse recovery energy	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=600 \mathrm{~V} \\ & -\mathrm{di}_{\mathrm{F}} / \mathrm{dt}=3000 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{I}_{\mathrm{F}}=200 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{v} J}=150^{\circ} \mathrm{C}$		$\begin{array}{r} 24 \\ 210 \\ 350 \\ 12 \end{array}$		$\mu \mathrm{C}$ A ns mJ
$\begin{aligned} & \mathbf{R}_{\mathrm{thJc}} \\ & \mathbf{R}_{\mathrm{thJH}} \end{aligned}$	thermal resistance junction to case thermal resistance junction to heatsink	with heatsink comp	setup		0.33	0.21	$\begin{aligned} & \text { K/W } \\ & \text { K/W } \end{aligned}$

Part number
M = Module
I = IGBT
X = XPT IGBT
$\mathrm{G}=\mathrm{Gen} 2 /$ std
$240=$ Current Rating $[\mathrm{A}]$
W = 6-pack
1200 = Reverse Voltage [V]
$\mathrm{T}=$ Thermistor
EH = E3-Pack

Ordering	Part Name	Marking on Product	Delivering Mode	Base Qty	Ordering Code
Standard	MIXG240W1200TEH	MIXG240W1200TEH	Box	5	517094
with Phase Change Material	MIXG240W1200TEH -PC	MIXG240W1200TEH	Blister	12	

IXYS reserves the right to change limits, test conditions and dimensions.
20150909

Equivalent Circuits for Simulation *on die level					
$\mathrm{I} \rightarrow \mathrm{~V}_{0}$	$\mathrm{R}_{0}-$		IGBT	FW Diode	
$\begin{aligned} & V_{0 \text { max }} \\ & R_{0 \text { max }} \end{aligned}$	threshold voltage slope resistance *	$\mathrm{T}_{\mathrm{vj}}=125^{\circ} \mathrm{C}$			V $m \Omega$
$\begin{aligned} & V_{0 \text { max }} \\ & R_{0 \text { max }} \end{aligned}$	threshold voltage slope resistance *	$\mathrm{T}_{\mathrm{vJ}}=175^{\circ} \mathrm{C}$	$\begin{aligned} & 1.2 \\ & 6.4 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 5.0 \end{aligned}$	V $\mathrm{m} \Omega$

Temperature Sensor NTC

Symbol	Definitions	Conditions	min.	typ.	max.	Unit
$\mathbf{R}_{\mathbf{2 5}}$	resistance	$\mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C}$	4.75	5.0	5.25	$\mathrm{k} \Omega$
$\mathbf{B}_{25 / 50}$	temperature coefficient			3375		K

Typ. NTC resistance vs. temperature

GIXYS

tentative

Detail X

Detail Y

Detail Z

