FTC1185 Low Dropout CMOS Voltage Regulators

FEATURES

Maximum output current: 150mA
Highly accurate: Output voltage +/- 2%

• Low power consumption.

On-chip Protections: Thermal, Short Circuit .

• Small input/output differential:

0.165V at 150mA

APPLICATIONS

- Battery-Operated Systems
- Portable Computers
- Portable Cameras and Video Recorders
- Reference Voltage Sources
- Instrumentation
- Pagers

PRODUCT DESCRIPTION

The TC1185 series is a low-dropout linear regulators. There are devices designed specifically for battery-operated Systems. Ground current is very small (2uA - Typ), that significantly extending battery life. Low power consumption and high accuracy is achieved through CMOS and programmable fuse technologies. Output voltage: 2.0V to 6.0V . The ÀÎ1075 consists of a high-precision voltage reference, an error correction circuit, and a current limited output driver. With good transient responses, output remains stable even during load changes. The SHDN input enables the output to be turned off , resulting in reduced power consumption.

Also, the TC1185 having high ripple rejection ratios, the series can be used with power supply noise. A 470pF capacitor from the Bypass input to ground reduces noise present on the internal reference, which in turn significantly reduces output noise. If output noise is not a concern, this input may be left unconnected. Larger capacitor values Cbp be used, but results in a longer time period to rated output voltage when power is initially applied.

The TC1185 incorporates both over-temperature and over-current protection.

SOT23-5 (300mW) and SOT-89-5 (500mW) packages are available.

Absolute Maximum Ratings

PARAMETER		SYMBOL	RATINGS	UNITS
Input Voltage		Vin	6.5	V
Output Current		Iout	150	mA
Output Voltage		Vout	Vss-0.3~Vin+0.3	V
Continuous Total	SOT-23-5	Pd	300	mW
Power Dissipation	SOT-89-5		500	
Operating Ambient Temperature		Topr	-30 ~ +80	,C
Storage temperature		Tstg	-40 ~ +125	,C

Pin Configuration

SOT-23-5

ELECTRICAL CHARACTERISTICS

(at $T_a = 25^{\circ}C$, $V_{IN} = Vout+0.5V$; unless otherwise noted)

rameter Conditions		Min	Тур	Max	Units
Output Voltage Accuracy	Io =1mA	-1.4		+1.4%	V
	Io=0 to 150mA	-3%		+2%	
Line Regulation ΔVout/ΔVinVout	Io=1mA, (Vout+0.1V) <vin<6.5v< td=""><td>-0.3</td><td>0.05</td><td>0.3</td><td>%/V</td></vin<6.5v<>	-0.3	0.05	0.3	%/V
Load Regulation	0mA ≤ Io ≤ 120mA Cout=1μF		0.01	0.04	%/mA
Dropout Voltage	Io=150mA		165	250	mV
Maximum Output Current	Vin=5V Vout=0.96*Vrating	150	400		mA
Current Limit		160			mA
Shutdown Exit Delay	Cbp=0μF Cout=1μF Io=100mA		600		μsec
Shutdown Input Bias Current	V _{SHDN} =Vin			100	nA
Shutdown Supply Current	V _{SHDN} =Gnd		0.01	1	μΑ
Shutdown Input Threshold Low	Vin=2.5 to 5.5 V			0.4	V
hutdown Input Threshold High Vin=2.5 to 5.5 V		2			V
Ground Pin Current Iout=0mA150mA			2	5	μΑ

Vout	Vin
	Gnd
BP	Shdn

Pad Location Coordinates (The center of pads)

coordinates (The center of pad				
Pad	X (µm)	Y (µm)		
Vout	149.5	1184		
Vin	709	1200		
GND	765	375		
SHDN	765	105		
BP	105	105		

Chip size 0.95x1.4 mm