Small Signal MOSFET

30 V/-20 V, +0.25/-0.88 A, Complementary, SC-88

Features

- Leading 20 V Trench for Low R_{DS(on)} Performance
- ESD Protected Gate
- SC-88 Package for Small Footprint (2 x 2 mm)
- NV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- DC–DC Conversion
- Load/Power Management
- Load Switch
- Cell Phones, MP3s, Digital Cameras, PDAs

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

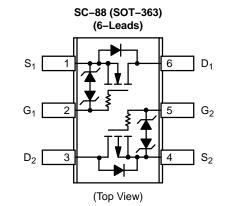
Par	Symbol	Value	Unit		
Drain-to-Source Volt	N–Ch	V _{DSS}	30	V	
	P-Ch		-20		
Gate-to-Source Volta	N–Ch	V _{GS}	±20	V	
		P-Ch		±12	
N–Channel Continuous Drain	Steady	$T_A = 25^{\circ}C$	Ι _D	0.25	А
Current (Note 1)	State	T _A = 85°C		0.18	
P-Channel Continuous Drain	Steady State	T _A = 25°C		-0.88	
Current (Note 1)		T _A = 85°C		-0.63	
Power Dissipation (Note 1)	Steady State	$T_A = 25^{\circ}C$	P _D	0.27	W
Pulsed Drain Cur-	N–Ch	to 10.00	I _{DM}	0.5	А
rent	P-Ch	tp = 10 μs		-3.0	
Operating Junction a	T _J , T _{stg}	–55 to 150	°C		
Source Current (Body	N–Ch	۱ _S	0.25	А	
	P-Ch		-0.48		
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C

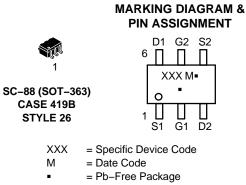
THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	R_{\thetaJA}	460	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface mounted on FR4 board using 1 in sq pad size


(Cu area = 1.127 in sq [1 oz] including traces).



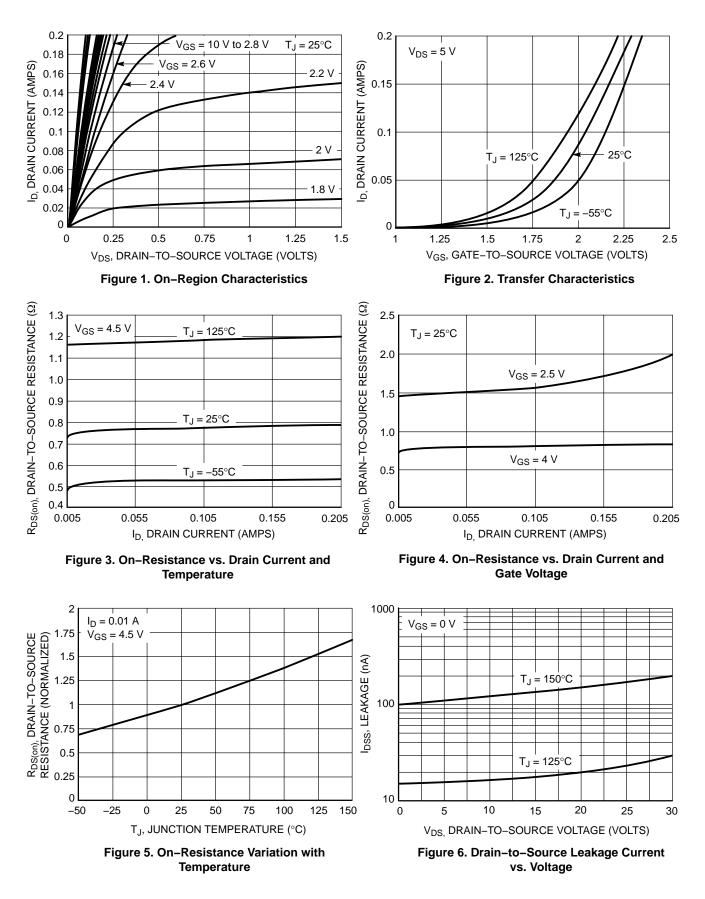
ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} Typ	I _D Max
N–Ch	1.0 Ω @ 4.5 V	0.25 A
30 V	1.5 Ω @ 2.5 V	0.23 A
P–Ch	215 mΩ @ –4.5 V	-0.88 A
–20 V	345 mΩ @ –2.5 V	-0.00 A

(Note: Microdot may be in either location)

ORDERING INFORMATION


See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	N/P	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS (Note 3)								
Drain-to-Source	V _{(BR)DSS}	Ν	N 0.V	I _D = 250 μA	30			V
Breakdown Voltage	()	Р	V _{GS} = 0 V	$I_{\rm D} = -250 \mu{\rm A}$	-20			1
Drain-to-Source Breakdown	V _{(BR)DSS} /	Ν		5 1		33		mV/
Voltage Temperature Coefficient	TJ	Р				-9.0		°C
Zero Gate Voltage Drain Current	I _{DSS}	Ν	V _{GS} = 0 V, V _{DS} = 30 V	T 0500			1.0	μΑ
C C	200	Р	$V_{GS} = 0 V, V_{DS} = -16 V$	$T_J = 25^{\circ}C$			1.0	1
		Ν	$V_{GS} = 0 V, V_{DS} = 30 V$	-		0.5		1
		Р	$V_{GS} = 0 V, V_{DS} = -16 V$	T _J = 125°C		0.5		1
Gate-to-Source Leakage Current	I _{GSS}	Ν	$V_{DS} = 0 V, V_{GS} = 1$	0 V			1.0	μA
	000	Р	$V_{DS} = 0 V, V_{GS} = -4$				1.0	
ON CHARACTERISTICS (Note 2)	l			-		I		
Gate Threshold Voltage	V _{GS(TH)}	Ν		I _D = 100 μA	0.8	1.2	1.5	V
Cale Inconora Tonago	· 63(1H)	P	$V_{GS} = V_{DS}$	$I_{\rm D} = -250 \mu{\rm A}$	-0.45	=		
Negative Gate Threshold	V _{GS(TH)} /	N		.D _00 p	01.10	3.2		mV/
Temperature Coefficient	TJ	P				-2.7	<u> </u>	°C
Drain-to-Source On Resistance	R _{DS(on)}	N	V _{GS} = 4.5 V, I _D = 10) mA		1.0	1.5	Ω
	09(on)	P	$V_{GS} = -4.5 \text{ V}, \text{ ID} = -600000000000000000000000000000000000$		<u> </u>	0.215	0.260	
		N	$V_{GS} = 2.5 \text{ V}, \text{ I}_{D} = 100000000000000000000000000000000000$			1.5	2.5	4
		P	$V_{GS} = -2.5 \text{ V}, \text{ I}_{D} = -0.5 \text{ V}$			0.345	0.500	
Forward Transconductance	0ro	N				0.040	0.000	S
	9fs	P	$V_{DS} = 3.0 \text{ V}, \text{ I}_{D} = 10 \text{ mA}$ $V_{DS} = -10 \text{ V}, \text{ I}_{D} = -0.88 \text{ A}$			3.0		
CHARGES, CAPACITANCES AND				.00 A		3.0		
			E		1	20	22	~ [
Input Capacitance	C _{ISS}	N		$V_{DS} = 5.0 V$		20	33	pF
		Р		$V_{DS} = -20 V$		155	225	
Output Capacitance	C _{OSS}	N	f = 1 MHz, V _{GS} = 0 V	V _{DS} = 5.0 V		19	32	
		Р		$V_{DS} = -20 V$		25	40	
Reverse Transfer Capacitance	C _{RSS}	N		V _{DS} = 5.0 V		7.25	12	
	<u> </u>	Р		$V_{DS} = -20 V$		18	30	
Total Gate Charge	Q _{G(TOT)}	N	$V_{GS} = 5.0 \text{ V}, V_{DS} = 24 \text{ V},$			0.9	1.5	nC
T	_	Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V},$			2.2	3.5	
Threshold Gate Charge	Q _{G(TH)}	N	$V_{GS} = 5.0 \text{ V}, V_{DS} = 24 \text{ V},$			0.2		
	-	Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V},$			0.2		
Gate-to-Source Charge	Q_{GS}	Ν	$V_{GS} = 5.0 \text{ V}, V_{DS} = 24 \text{ V},$			0.3		
	-	Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V},$			0.5		
Gate-to-Drain Charge	Q_{GD}	Ν	$V_{GS} = 5.0 \text{ V}, V_{DS} = 24 \text{ V},$			0.2		
		Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V},$	I _D = -0.88 A		0.65		
SWITCHING CHARACTERISTICS (Note 3)							
Turn–On Delay Time	t _{d(ON)}	Ν				15		ns
Rise Time	t _r		V_{GS} = 4.5 V, V_{DD} = 5.0 V, I _D = 250 mA, R _G = 50 Ω			66		
Turn-Off Delay Time	t _{d(OFF)}					56		
Fall Time	t _f					78		
Turn–On Delay Time	t _{d(ON)}	Р	$V_{GS} = -4.5 \text{ V}, V_{DD} = -10 \text{ V},$ $I_D = -0.5 \text{ A}, R_G = 20 \Omega$		5.8			
Rise Time	t _r					6.5]
Turn–Off Delay Time	t _{d(OFF)}					13.5]
Fall Time	t _f					3.5		
DRAIN-SOURCE DIODE CHARAC	FERISTICS							
Forward Diode Voltage	V _{SD}	Ν		I _S = 10 mA	1	0.65	0.7	V
~	00	P	$V_{GS} = 0 V, T_J = 25^{\circ}C$	$I_{\rm S} = -0.48$ A	1	-0.8	-1.2	1
		N	· · · · · · ·	$I_{\rm S} = 10 \rm{mA}$	1	0.45		1
		P	$V_{GS} = 0 V, T_{J} = 125^{\circ}C$	$I_{\rm S} = -0.48$ A	1	-0.66	1	1
Reverse Recovery Time	t _{RR}	N	V _{GS} = 0 V, d _{IS} /d _t = 8.0 A/μs	$I_{\rm S} = 10 \rm{mA}$	<u> </u>	12.4	<u> </u>	ns
Reverse Recovery Time	L L L L L L L L L L L L L L L L L L L							

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
Switching characteristics are independent of operating junction temperatures.

TYPICAL N-CHANNEL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

TYPICAL N-CHANNEL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

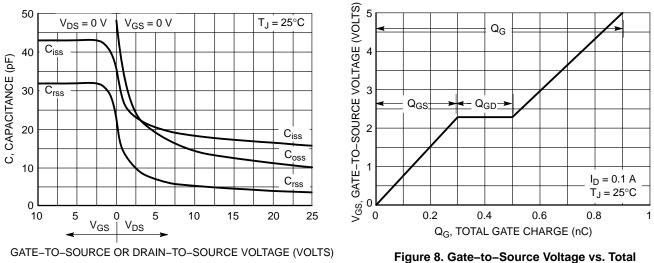


Figure 7. Capacitance Variation

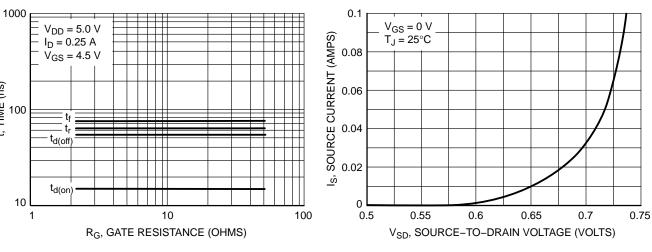
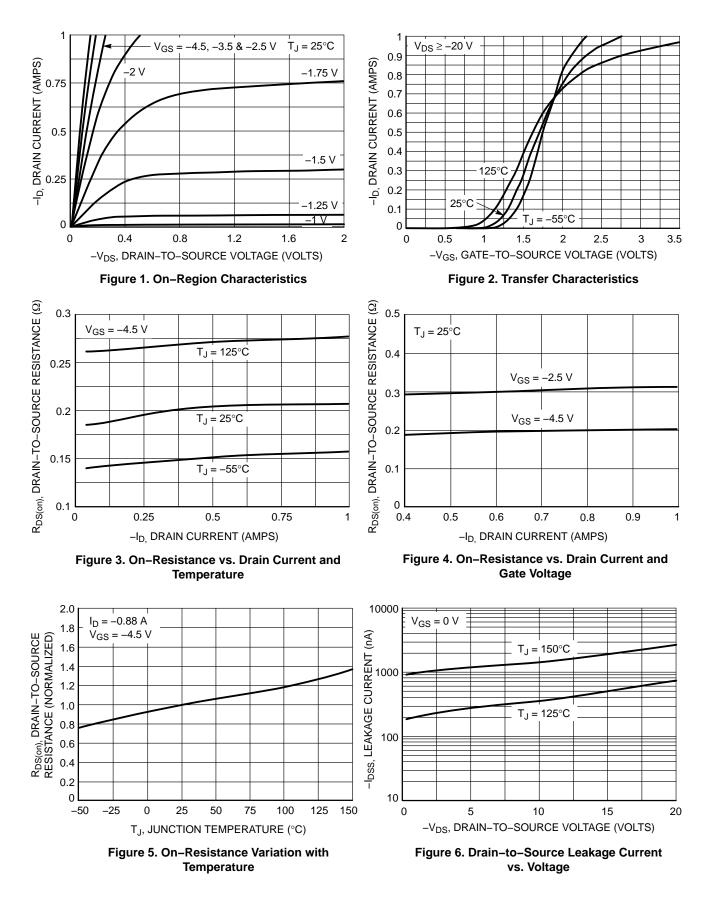
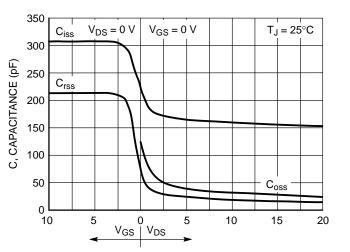
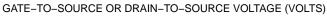



Figure 9. Resistive Switching Time Variation vs. Gate Resistance


t, TIME (ns)


Figure 10. Diode Forward Voltage vs. Current

TYPICAL P-CHANNEL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

TYPICAL P-CHANNEL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

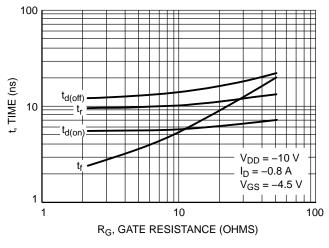


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

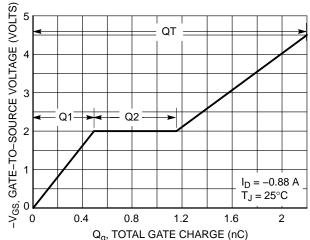


Figure 8. Gate-to-Source Voltage vs. Total Gate Charge

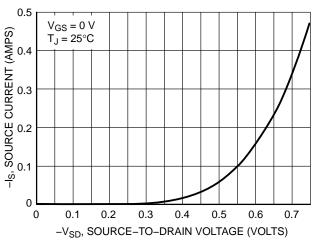
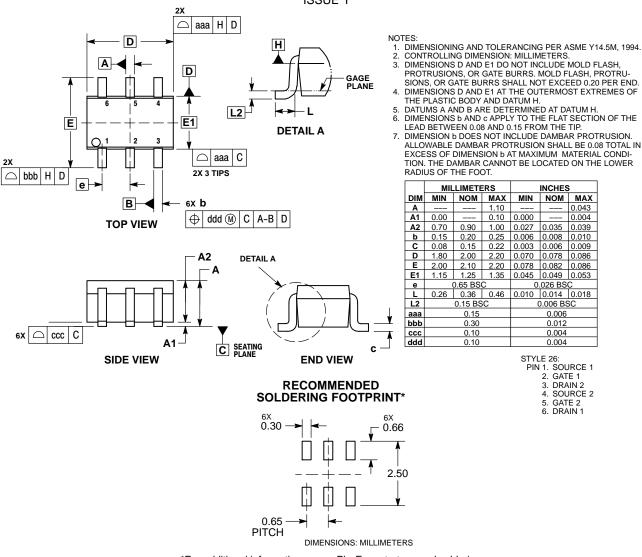


Figure 10. Diode Forward Voltage vs. Current

ORDERING INFORMATION


Device	Marking	Package	Shipping [†]		
NTJD4158CT1G	TCD				
NTJD4158CT2G	TCD	SC–88 (Pb–Free)	3000 / Tape & Reel		
NVJD4158CT1G*	VCD	(*******)			

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable.

PACKAGE DIMENSIONS

SC-88/SC70-6/SOT-363 CASE 419B-02 ISSUE Y

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the unarrest are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

INCHES

MIN NOM MAX

0.006 0.008 0.010

0.070 0.078 0.086

0.026 BS

0.010 0.014 0.018

0.006 BS0

0.006

0.012

0.004

0.004

STYLE 26: PIN 1. SOURCE 1

2. GATE 1

3 DRAIN 2 4. SOURCE 2

5. GATE 2 6. DRAIN 1

0.043

0.004

0.039

1.10

0.10

0.000

0.027 0.035

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative