Part Number Hot Search : 
BZX97C39 3077P LUE3333 16D06 MLL5927 ST62T XXXXDM EL7212CN
Product Description
Full Text Search
 

To Download SGM8541 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 SGM8541 SGM8542 SGM8544
PRODUCT DESCRIPTION
The SGM8541 (single) SGM8542 (dual) and SGM8544 (quad) are rail-to-rail input and output voltage feedback amplifiers offering low cost. They have a wide input common-mode voltage range and output voltage swing, and take the minimum operating supply voltage down to 2.1V and the maximum recommended supply voltage is 5.5 V. All are specified over the extended -40C to +125C temperature range. The SGM8541/8542/8544 provide 1.1MHz bandwidth at a low current consumption of 42A per amplifier. Very low input bias currents of 0.5pA, enable SGM8541/8542 /8544 to be used for integrators, photodiode amplifiers, and piezoelectric sensors. Rail-to-rail inputs and outputs are useful to designers buffering ASIC in single-supply systems. Applications for this amplifiers include safety monitoring, portable equipment, battery and power supply control, and signal conditioning and interfacing for transducers in very low power systems. The SGM8541 is available in the tiny SOT23-5 and SO-8 packages. The SGM8542 comes in the miniature SO-8 and MSOP-8 packages. The SGM8544 is offered in TSSOP-16 and SO-16 packages.
1.1MHz, 42A, Rail-to-Rail I/O CMOS Operational Amplifier
FEATURES
* Low Cost * Rail-to-Rail Input and Output 0.8mV Typical VOS * Unity Gain Stable * Gain Bandwidth Product: : 1.1MHz * Very low input bias currents : 0.5pA * Operates on 2.1 V to 5.5 V Supplies * Input Voltage Range = - 0.1 V to +5.6 V with VS = 5.5 V * Low Supply Current: 42A/Amplifier * Small Packaging SGM8541 Available in SO-8 and SOT23-5 SGM8542 Available in SO-8 and MSOP-8 SGM8544 Available in SO-16 and TSSOP-16
PIN CONFIGURATIONS (Top View)
SGM8541
NC -IN +IN -VS 1 2 3 4 8 7 6 5 NC +VS OUT NC OUT -VS 1 2
SGM8541
5 +VS
+IN 3
4
-IN
SOT23-5
APPLICATIONS
ASIC Input or Output Amplifier Sensor Interface Piezo Electric Transducer Amplifier Medical Instrumentation Mobile Communication Audio Output Portable Systems Smoke Detectors Mobile Telephone Notebook PC PCMCIA cards Battery -Powered equipment
SO-8
NC = NO CONNECT OUT A -IN A OUTA -INA +INA 1 2 3 8 7 6 +VS OUT B -INB +IN A +VS +IN B -INB OUT B NC 1 2 3 4 5 6 7 8
SGM8544
16 OUT D 15 -IND 14 +IND 13 -VS 12 +INC 11 10
NC = NO CONNECT
SGM8542
-VS 4
5 +INB
-INC OUT C NC
SO-8 / MSOP-8
9
SO-16/TSSOP-16
Shengbang Microelectronics Co, Ltd Tel: 86/451/84348461 www.sg-micro.com
REV. A
ELECTRICAL CHARACTERISTICS : VS = +5V
(At RL = 100k connected to Vs/2,and VOUT = Vs/2, unless otherwise noted)
SGM8541/8542/8544 PARAMETER CONDITION TYP +25 INPUT CHARACTERISTICS Input Offset Voltage (VOS) Input Bias Current (IB) Input Offset Current (IOS) Common-Mode Voltage Range (VCM) Common-Mode Rejection Ratio(CMRR) Open-Loop Voltage Gain( AOL) Input Offset Voltage Drift (VOS/T) OUTPUT CHARACTERISTICS Output Voltage Swing from Rail Output Current (IOUT) POWER SUPPLY Operating Voltage Range Power Supply Rejection Ratio (PSRR) Quiescent Current / Amplifier (IQ) DYNAMIC PERFORMANCE Gain-Bandwidth Product (GBP) Slew Rate (SR) Settling Time to 0.1%( tS) Overload Recovery Time NOISE PERFORMANCE Voltage Noise Density (en) f = 1kHz f = 10kHz 27 20 nV/ nV/
Hz
Hz
MIN/MAX OVER TEMPERATURE +25 0 to70 -40 to 85 -40 to 125 UNITS MIN/ MAX
0.8 0.5 0.5 VS = 5.5V VS = 5.5V, VCM = - 0.1V to 4 V VS = 5.5V, VCM = - 0.1V to 5.6 V RL = 5K ,Vo = 0.1V to 4.9V RL =100K ,Vo = 0.035V to 4.965V - 0.1 to + 5.6 88 78 90 94 2.7
3.5
3.7
4.1
5.4
mV pA pA V
MAX TYP TYP TYP MIN MIN MIN MIN TYP
72 60 80 85
72 59 80 85
72 59 80 85
72 57 78 82
dB dB dB dB V/
RL = 100K
0.008 23 20 19.1 18.8 18
V mA
TYP MIN
2.1 5.5 Vs = +2.5 V to + 5.5 V VCM = (-VS) + 0.5 IOUT = 0 CL = 100pF 1.1 G = +1 , 2V Output Step G = +1, 2 V Output Step VIN *Gain = Vs 0.52 5.3 2.6 92 42 76 54
2.5 5.5 74 59
2.5 5.5 71 60
2.5 5.5 70 64
V V dB A
MIN MAX MIN MAX
MHz V/s s s
TYP TYP TYP TYP
TYP TYP
Specifications subject to change without notice.
SGM8541/8542/8544
PACKAGE/ORDERING INFORMATION
MODEL SGM8541 ORDER NUMBER SGM8541XN5/TR SGM8541XS/TR SGM8542XS/TR SGM8542XMS/TR SGM8544XS/TR SGM8544XTS PACKAGE DESCRIPTION SOT23-5 SO-8 SO-8 MSOP-8 SO-16 TSSOP-16 PACKAGE OPTION Tape and Reel, 3000 Tape and Reel, 2500 Tape and Reel, 2500 Tape and Reel, 3000 Tape and Reel, 2500 Tape and Reel, 3000 MARKING INFORMATION 8541 SGM8541XS SGM8542XS SGM8542XMS SGM8544XS SGM8544XTS
SGM8542
SGM8544
ABSOLUTE MAXIMUM RATINGS
Supply Voltage, V+ to V- . . . . . . . . . . . . . . . . . . . . . 7.5 V Common-Mode Input Voltage . . . . . . . . . . . . . . . . . . . . .(-VS )- 0.5 V to (+VS) +0.5V Storage Temperature Range . . . . . . . . .-65 to +150 Junction Temperature . . . . . . . . . . . . . . . .. . . . . . . .150 Operating Temperature Range . . . . . . -55 to +150 Lead Temperature Range (Soldering 10 sec) . . . . . . . . . . .. . . . . . . . . . . . . . . . 300 ESD(HBM) . . . . . . . . . . .. . .. . . . .. . . . . . . . . . . . . . . .4KV
NOTES 1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
CAUTION
This integrated circuit can be damaged by ESD. Shengbang Micro-electronics recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
SGM8541/8542/8544
TYPICAL PERFORMANCE CHARACTERISTICS
At TA = +25, VS = +5V, and RL = 100k connected to Vs/2,unless otherwise noted. Small-Signal Step Response
G = +1 CL = 100pF RL = 100K
Large-Signal Step Response
G = +1 CL = 100pF RL = 100K
20mV/div
2s/div
500mV/div
10s/div
Small-Signal Overshoot vs.Load Capacitance
Small-Signal Overshoot vs.Load Capacitance 60 Small-Signal Overshoot(%) 50 40 30 20 10 0 G = +1 RL = 100K G = -1 RFB = 5K G = -1 RFB = 100K
60 Small-Signal Overshoot(%) 50 40 30 20 10 0 10 100 1000 Load Capacitance(pF) 10000
G = -5 RFB = 100K
10
100 1000 Load Capacitance(pF)
10000
Maximum Output Voltage vs.Frequency 6 5 Output Voltage(Vp-p) 4 3 2 1 0 1 10 100 1000 Frequency(kHz) 10000 VS = 2.5V VS = 5V
Maximum Output Voltage Without Slew-Rate Induced Distortion
50
Quiescent And Short-Circuit Current vs.Supply Voltage 30 25 Short-Circuit Current(mA)
VS = 5.5V
Quiescent Current(A) 45 40 35 30 25 2 2.5 3 3.5 4 4.5 Supply Voltage(V) 5 5.5
IQ ISC
20 15 10 5
SGM8541/8542/8544
TYPICAL PERFORMANCE CHARACTERISTICS
At TA = +25, VS = +5V, and RL = 100k connected to Vs/2,unless otherwise noted.
Input Voltage Noise Spectral Density vs.Frequency
CMRR And PSRR vs.Frequency 100 90 80 CMRR,PSRR(dB) 70 60 50 40 30 20 10 0 0.01 0.1 1 10 100 Frequency(kHz) 1000 10000 PSRR CMRR
1000
Voltage Noise(nV/Hz)
100
10 0.01
0.1
1 Frequency(kHz)
10
100
Output Voltage Swing vs.Output Current 3 135 Output Voltage(V) 2 VS = 3V 1 -50 25 135 Sinking Current 0 0 4 8 12 16 20 Output Current(mA) Sourcing Current -50 Output Voltage(V) 25 4 3 2 1 5
Output Voltage Swing vs.Output Current 135 VS = 5V -50 Sourcing Current
25
Sinking Current -50 135 25 15 20 25 30
0 0 5 10 Output Current(mA)
Supply Current vs.Temperature 60 55 50 45 40 35 30 -50 -30 -10 10 30 50 70 Temperature() 90 110 130 VS = 2.5V
Open-Loop Gain vs.Temperature 120 110 Open-Loop Gain(dB) RL = 5k RL = 100k
Supply Current(A)
VS = 5V VS = 3V
100 90 80 70 60 -50 -30 -10 10 30 50 70 Temperature() 90 110 130
SGM8541/8542/8544
TYPICAL PERFORMANCE CHARACTERISTICS
At TA = +25, VS = +5V, and RL = 100k connected to Vs/2,unless otherwise noted.
Common-Mode Rejection Ratio vs.Temperature 120 110 100 CMRR(dB) 90 80 70 60 -50 -30 -10 10 30 50 70 Temperature() 90 110 130
PSRR(dB) 120 Power-Supply Rejection Ratio vs.Temperature
-Vs < VCM < (+Vs)-1.5V
110 100
-Vs < VCM <(+Vs)
90 80 70 60 -50 -30 -10 10 30 50 70 Temperature() 90 110 130
Overload Recovery Time
Percent of Amplifiers(%)
Vs = 5V G = -5 VIN = 500mV
Offset Voltage Production Distribution 27 24 21 18 15 12 9 6 3 0
-3 -2 -1 0 0.5 1 1.5 2 2.5 -2.5 -1.5 -0.5 3
Typical production distribution of packaged units.
2.5V
0V 500mV 0V
Time(2s/div)
Offset Voltage(mV)
SGM8541/8542/8544
APPLICATION NOTES
Driving Capacitive Loads
The SGM854X can directly drive 250pF in unity-gain without oscillation. The unity-gain follower (buffer) is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of amplifiers and this results in ringing or even oscillation. Applications that require greater capacitive drive capability should use an isolation resistor between the output and the capacitive load like the circuit in Figure 1. The isolation resistor RISO and the load capacitor CL form a zero to increase stability. The bigger the RISO resistor value, the more stable VOUT will be. Note that this method results in a loss of gain accuracy because RISO forms a voltage divider with the RLOAD.
Power-Supply Bypassing and Layout
The SGM854X family operates from either a single +2.5V to +5.5V supply or dual 1.25V to 2.75V supplies. For single-supply operation, bypass the power supply VDD with a 0.1F ceramic capacitor which should be placed close to the VDD pin. For dual-supply operation, both the VDD and the VSS supplies should be bypassed to ground with separate 0.1F ceramic capacitors. 2.2F tantalum capacitor can be added for better performance.
VDD VDD 10F
10F 0.1F
0.1F
RISO
SGM8541
VOUT CL
Vn Vn
SGM8541
VIN
VOUT
SGM8541
VOUT 10F
Vp
Vp
Figure 1. Indirectly Driving Heavy Capacitive Load An improvement circuit is shown in Figure 2, It provides DC accuracy as well as AC stability. RF provides the DC accuracy by connecting the inverting signal with the output, CF and RIso serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.
VSS(GND)
0.1F
VSS
Figure 3. Amplifier with Bypass Capacitors
CF RF RISO
SGM8541
VOUT CL RL
VIN
Figure 2. Indirectly Driving Heavy Capacitive Load with DC Accuracy For no-buffer configuration, there are two others ways to increase the phase margin: (a) by increasing the amplifier's gain or (b) by placing a capacitor in parallel with the feedback resistor to counteract the parasitic capacitance associated with inverting node.
SGM8541/8542/8544
Typical Application Circuits
Differential Amplifier
The circuit shown in Figure 4 performs the difference function. If the resistors ratios are equal ( R4 / R3 = R2 / R1 ), then VOUT = ( Vp - Vn ) x R2 / R1 + Vref.
C R2 R1 VIN
SGM8541
R2 Vn Vp R3 R4 Vref
Figure 4. Differential Amplifier
VOUT
R1
SGM8541
VOUT
R3 = R1 // R2
Figure 6. Low Pass Active Filter
Instrumentation Amplifier
The circuit in Figure 5 performs the same function as that in Figure 4 but with the high input impedance.
R2 R1
SGM8541
Vn
SGM8541
VOUT
Vp
SGM8541
R3
R4
Vref
Figure 5. Instrumentation Amplifier
Low Pass Active Filter
The low pass filter shown in Figure 6 has a DC gain of ( - R2 / R1 ) and the -3dB corner frequency is 1/2R2C. Make sure the filter is within the bandwidth of the amplifier. The Large values of feedback resistors can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation in high-speed amplifiers. Keep resistors value as low as possible and consistent with output loading consideration.
SGM8541/8542/8544
PACKAGE OUTLINE DIMENSIONS
SOT23-5
Symbol
A A1 A2 b c D E E1 e e1 L L1
Dimensions In Millimeters Dimensions In Inches Min Max Min Max 1.050 1.250 0.041 0.049 0.000 0.100 0.000 0.004 1.050 1.150 0.041 0.045 0.300 0.400 0.012 0.016 0.100 0.200 0.004 0.008 2.820 3.020 0.111 0.119 1.500 1.700 0.059 0.067 2.650 2.950 0.104 0.116 0.950TYP 0.037TYP 1.800 2.000 0.071 0.079 0.700REF 0.028REF 0.300 0.600 0.012 0.024 0 8 0 8
SGM8541/8542/8544
PACKAGE OUTLINE DIMENSIONS
SO-8
Symbol
A A1 A2 B C D E E1 e L
Dimensions In Millimeters Dimensions In Inches Min Max Min Max 1.350 1.750 0.053 0.069 0.100 0.250 0.004 0.010 1.350 1.550 0.053 0.061 0.330 0.510 0.013 0.020 0.190 0.250 0.007 0.010 4.780 5.000 0.188 0.197 3.800 4.000 0.150 0.157 5.800 6.300 0.228 0.248 1.270TYP 0.050TYP 0.400 1.270 0.016 0.050 0 8 0 8
SGM8541/8542/8544
PACKAGE OUTLINE DIMENSIONS
MSOP-8
Symbol
A A1 A2 b c D e E E1 L
Dimensions In Millimeters Dimensions In Inches Min Max Min Max 0.800 1.200 0.031 0.047 0.000 0.200 0.000 0.008 0.760 0.970 0.030 0.038 0.30 TYP 0.012 TYP 0.15 TYP 0.006 TYP 2.900 3.100 0.114 0.122 0.65 TYP 0.026 TYP 2.900 3.100 0.114 0.122 5.100 0.201 4.700 0.185 0.410 0.650 0.016 0.026 0 6 0 6
SGM8541/8542/8544
PACKAGE OUTLINE DIMENSIONS
SO-16
Symbol
A A1 A2 b c D E E1 e L
Dimensions In Millimeters Dimensions In Inches Min Max Min Max 1.350 1.750 0.053 0.069 0.100 0.250 0.004 0.010 1.350 1.550 0.053 0.061 0.330 0.510 0.013 0.020 0.170 0.250 0.007 0.010 9.800 10.20 0.386 0.402 3.800 4.000 0.150 0.157 5.800 6.200 0.228 0.244 1.270 (BSC) 0.050 (BSC) 0.400 1.270 0.016 0.050 0 8 0 8
SGM8541/8542/8544
PACKAGE OUTLINE DIMENSIONS
TSSOP-16
Symbol
D E b c E1 A A2 A1 e L H
Dimensions In Millimeters Dimensions In Inches Min Max Min Max 4.900 5.100 0.193 0.201 4.300 4.500 0.169 0.177 0.190 0.300 0.007 0.012 0.090 0.200 0.004 0.008 6.250 6.550 0.246 0.258 1.100 0.043 0.800 1.000 0.031 0.039 0.020 0.150 0.001 0.006 0.65 (BSC) 0.026 (BSC) 0.500 0.700 0.020 0.028 0.25(TYP) 0.01(TYP) 1 7 1 7
SGM8541/8542/8544


▲Up To Search▲   

 
Price & Availability of SGM8541

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X