Part Number Hot Search : 
T24C0 C5100 PMB2304 10A04 CY7C0 FG1007 MBR1060 EMP11
Product Description
Full Text Search
 

To Download DS923 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 1 ? copyright 2016 xilinx, inc. xilinx, the xilinx logo, artix, ise, kintex, sp artan, virtex, vivado, zy nq, and other designated brands included herein ar e trademarks of xilinx in the united states and other countries. amba, amba designer, arm, arm1176jz-s, coresight, cort ex, and primecell are trademark s of arm in the eu and other countries. pci, pci express, pcie, and pci-x are trademarks of pci- sig. all other trademarks are the property of their respecti ve owners. summary the xilinx? virtex? ultrascale+? fpgas are available in -3, -2, -1 speed grades, with -3e devices having the highest performance. the -2le and -1li devices can operate at a v ccint voltage at 0.85v or 0.72v and provide lower maximum static po wer. when operated at a v ccint voltage at 0.72v, the -2le and -1li performance and static and dynamic power is reduced. however, when operated at a v ccint voltage of 0.85v using -2le and -1li devices, the speed specification for the l devices is the same as the -2i or -1i speed grades with reduced static power. dc and ac characteristics are specified in extended (e) and industrial (i) temp erature ranges. except the operating temperature range or unless otherwise noted, all the dc and ac electrical parameters are the same for a particular speed grade (t hat is, the timing characteristics of a -1 speed grade extended device are the same as for a -1 speed grade industrial devi ce). however, only selected speed grades and/or devices are available in each temperature range. all supply voltage and junction temp erature specifications are representative of worst-case conditions. the parameters included are common to po pular designs and typical applications. this data sheet, part of an overall set of document ation on the virtex ultrascale + fpgas, is available on the xilinx website at virtex-ultrascale-plus . dc characteristics virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 advance product specification table 1: absolute maximum ratings (1) symbol description min max units fpga logic v ccint internal supply voltage. ?0.500 1.000 v v ccint_io (2) internal supply voltage for the i/o banks. ?0.500 1.000 v v ccaux auxiliary supply voltage. ?0.500 2.000 v v ccbram supply voltage for the block ram memories. ?0.500 1.000 v v cco output drivers supply voltage for the i/o banks. ?0.500 v v ccaux_io (3) auxiliary supply voltage for the i/o banks. ?0.500 2.000 v v ref input reference voltage. v v in (4)(5)(6) i/o input voltage for i/o banks. ?0.550 v cco + 0.550 v v batt key memory battery backup supply ?0.500 2.000 v i dc available output current at the pad. ma i rms available rms output current at the pad. ma s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 2 gty transceivers v mgtavcc analog supply voltage for the gty transmitter and receiver circuits. ?0.500 1.000 v v mgtavtt analog supply voltage for the gty transmitter and receiver termination circuits. ?0.500 1.300 v v mgtvccaux auxiliary analog quad pll (qpl l) voltage supply for the gty transceivers. ?0.500 1.900 v v mgtrefclk gty transceiver reference clock absolute input voltage. ?0.500 1.300 v v mgtavttrcal analog supply voltage for the resistor calibration circuit of the gty transceiver column. ?0.500 1.300 v v in receiver (rxp/rxn) and transmitter (txp/txn) absolute input voltage. ?0.500 1.200 v i dcin-float dc input current for receiver input pins dc coupled rx termination = floating. ?ma i dcin-mgtavtt dc input current for receiver input pins dc coupled rx termination = v mgtavtt . ?0 (7) ma i dcin-gnd dc input current for receiver input pins dc coupled rx termination = gnd. ?0 (7) ma i dcin-prog dc input current for receiver input pins dc coupled rx termination = programmable. ?0 (7) ma i dcout-float dc output current for transmitter pins dc coupled rx termination = floating. ?ma i dcout-mgtavtt dc output current for transmitter pins dc coupled rx termination = v mgtavtt . ?ma system monitor v ccadc system monitor supply relative to gndadc. 0.500 2.000 v v refp system monitor reference input relative to gndadc. 0.500 2.000 v temperature t stg storage temperature (ambient). ?65 150 c t sol maximum soldering temperature (8) .?260c t j maximum junction temperature (8) .?125c notes: 1. stresses beyond those listed under absolute maximum ratings might cause permanent damage to the device. these are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under operating conditions is not implied. expo sure to absolute maximum ratings condit ions for extended periods of time might affect device reliability. 2. v ccint_io must be connected to v ccbram . 3. v ccaux_io must be connected to v ccaux . 4. the lower absolute voltage specification always applies. 5. for i/o operation, see the ultrascale architecture se lectio resources user guide ( ug571 ). 6. the maximum limit applied to dc signals. for maxi mum undershoot and overshoot ac specifications, see table 4 . 7. for more information on supported gt y transceiver terminations see the or ultrascale architecture gty transceiver user guide ( ug578 ) 8. for soldering guidelines and thermal considerations, see the ultrascale and ultrascale+ fpga packaging and pinout specifications ( ug575 ). table 1: absolute maximum ratings (1) (cont?d) symbol description min max units s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 3 table 2: recommended oper ating conditions (1)(2) symbol description min typ max units fpga logic v ccint internal supply voltage. 0.825 0.850 0.876 v for -1li and -2le (0.72v only) devices: internal supply voltage. 0.698 0.720 0.742 v for -3e devices: internal supply voltage. 0.873 0.900 0.927 v v ccint_io (3) internal supply voltage for the i/o banks. 0.825 0.850 0.876 v for -1li and -2le devices (0.85v only): internal supply voltage for the i/o banks. 0.825 0.850 0.876 v for -3e devices: internal supply voltage for the i/o banks. 0.873 0.900 0.927 v v ccbram block ram supply voltage. 0.825 0.850 0.876 v for -3e devices: block ram supply voltage. 0.873 0.900 0.927 v v ccaux auxiliary supply voltage. 1.746 1.800 1.854 v v cco (4)(5) supply voltage for i/o banks. 0.950 ? 1.900 v v ccaux_io (6) auxiliary i/o supply voltage. 1.746 1.800 1.854 v v in (7) i/o input voltage. ?0.200 ? v cco +0.200 v i in (8) maximum current through any pin in a powered or unpowered bank when forward biasing the clamp diode. ?? ma v batt (9) battery voltage 1.000 ? 1.890 v gty transceiver v mgtavcc (10) analog supply voltage for the gty transceiver. 0.873 0.900 0.927 v v mgtavtt (10) analog supply voltage for the gty transmitter and receiver termination circuits. 1.164 1.20 1.236 v v mgtvccaux (10) auxiliary analog qpll vo ltage supply for the transceivers. 1.746 1.80 1.854 v v mgtavttrcal (10) analog supply voltage for the resistor calibration circuit of the gty transceiver column. 1.164 1.20 1.236 v s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 4 sysmon v ccadc sysmon supply relative to gndadc. 1.746 1.800 1.854 v v refp externally supplied reference voltage. 1.200 1.250 1.300 v temperature t j junction temperature operating range for extended (e) temperature devices. (11) 0? 100 c junction temperature operating range for industrial (i) temperature devices. ?40 ? 100 c notes: 1. all voltages are relative to gnd. 2. for the design of the power distribution system consult ultrascale architectu re pcb design guide ( ug583 ). 3. v ccint_io must be connected to v ccbram . 4. for v cco_0 , the minimum recomm ended operating voltage for power on and during configuration is 1.425v. after configuration, data is retained even if v cco drops to 0v. 5. includes v cco of 1.0v, 1.2v, 1.35v, 1.5v, and 1.8v. 6. v ccaux_io must be connected to v ccaux . 7. the lower absolute voltage specification always applies. 8. a total of 200 ma per 52-pin bank should not be exceeded. 9. if battery is not used, connect v batt to either gnd or v ccaux . 10. each voltage listed requires filtering as described in the ultrascale architecture gt y transceiver user guide ( ug578 ). 11. devices labeled with the speed/temperature grade of -2le ca n operate for a limited time at a junction temperature of 110c. timing parameters adhere to the same speed file at 110c as they do below 110c, regardless of operating voltage (nominal voltage of 0.85v or a low-voltage of 0.72v). operat ion at tj = 110c is limited to 1% of the device lifetime and can occur sequentially or at regular intervals as long as the total time does not exceed 1% of the device lifetime. table 2: recommended oper ating conditions (1)(2) (cont?d) symbol description min typ max units s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 5 table 3: dc characteristics over reco mmended operating conditions symbol description min typ (1) max units v drint data retention v ccint voltage (below which configuration data might be lost). ??v v draux data retention v ccaux voltage (below which configuration data might be lost). ??v i ref v ref leakage current per pin. ? ? a i l input or output leakage current per pin (sample-tested). (2) ?? a c in (3) die input capacitance at the pad. ? ? pf i rpu pad pull-up (when selected) at v in =0v, v cco =3.3v. ? a pad pull-up (when selected) at v in =0v, v cco =2.5v. ? a pad pull-up (when selected) at v in =0v, v cco =1.8v. ? a pad pull-up (when selected) at v in =0v, v cco =1.5v. ? a pad pull-up (when selected) at v in =0v, v cco =1.2v. ? a i rpd pad pull-down (when selected) at v in =3.3v. ? a pad pull-down (when selected) at v in =1.8v. ? a i ccadcon analog supply current, analog circuits in power-up state. ? ? ma i ccadcoff analog supply current, analog circuits in power-down state. ? ? ma i batt (4)(5) battery supply current. 150 ? na calibrated programmable on-die termination (dci) in i/o banks (7) (measured per jedec specification) r (8) thevenin equivalent resistance of programmable input termination to v cco /2 where odt = rtt_40. (6) 40 thevenin equivalent resistance of programmable input termination to v cco /2 where odt = rtt_48. (6) 48 thevenin equivalent resistance of programmable input termination to v cco /2 where odt = rtt_60. (6) 60 programmable input termination to v cco where odt = rtt_40. (6) 40 programmable input termination to v cco where odt = rtt_48. (6) 48 programmable input termination to v cco where odt = rtt_60. (6) 60 programmable input termination to v cco where odt = rtt_120. (6) 120 programmable input termination to v cco where odt = rtt_240. (6) 240 s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 6 uncalibrated programmable on-die termination in i/o banks (measured per jedec specification) r (8) thevenin equivalent resistance of programmable input termination to v cco /2 where odt = rtt_40. 40 thevenin equivalent resistance of programmable input termination to v cco /2 where odt = rtt_48. 48 thevenin equivalent resistance of programmable input termination to v cco /2 where odt = rtt_60. 60 programmable input termination to v cco where odt = rtt_40. 40 programmable input termination to v cco where odt = rtt_48. 48 programmable input termination to v cco where odt = rtt_60. 60 programmable input termination to v cco where odt = rtt_120. 120 programmable input termination to v cco where odt = rtt_240. 240 internal v ref 50% v cco v cco x 0.49 v cco x 0.50 v cco x 0.51 v 70% v cco v cco x 0.69 v cco x 0.70 v cco x 0.71 v differential termination programmable differential termination (term_100) for the i/o banks. ? 100 ? n temperature diode ideality factor. ? 1.026 ? ? r temperature diode series resistance. ? ? notes: 1. typical values are specified at nominal voltage, 25c. 2. for the i/o banks with a v cco of 1.8v and separated v cco and v ccaux_io power supplies, the i l maximum current is 70 a. 3. this measurement represents the die capacitance at the pad, not including the package. 4. maximum value specified for worst case process at 25c. 5. i batt is measured when the battery-backed ram (bbram) is enabled. 6. if vrp resides at a different bank (dci cascade), the range increases to 15%. 7. vrp resistor tolerance is (240 1%) 8. on-die input termination resistance, for more information see the ultrascale architecture selectio resources user guide ( ug571 ). table 3: dc characteristics over reco mmended operating conditions (cont?d) symbol description min typ (1) max units s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 7 table 4: v in maximum allowed ac voltage overshoo t and undershoot for the i/o banks (1)(2) ac voltage overshoot % of ui at ?40c to 100c a c voltage undershoot % of ui at ?40c to 100c v cco +0.05 v cco +0.10 v cco +0.15 v cco +0.20 v cco +0.25 v cco +0.30 v cco +0.35 v cco +0.40 v cco +0.45 v cco +0.50 v cco +0.55 v cco +0.60 v cco +0.65 v cco +0.70 v cco +0.75 v cco +0.80 v cco +0.85 notes: 1. a total of 200 ma per bank should not be exceeded. 2. for ui smaller than 20 s. table 5: typical quiescent supply current (1)(2)(3) symbol description device speed grade and v ccint operating voltages units 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 i ccintq quiescent v ccint supply current. xcvu3p 2608 2484 2484 2189 2189 ma xcvu5p ma xcvu7p 5215 4968 4968 4378 4378 ma xcvu9p 7823 7452 7452 6566 6566 ma xcvu11p ma xcvu13p ma i ccint_ioq quiescent current for v ccint_io supply. xcvu3p 149 144 144 144 144 ma xcvu5p ma xcvu7p 298 287 287 287 287 ma xcvu9p 447 431 431 431 431 ma xcvu11p ma xcvu13p ma s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 8 i ccoq quiescent v cco supply current. xcvu3p11111ma xcvu5p ma xcvu7p11111ma xcvu9p11111ma xcvu11p ma xcvu13p ma i ccauxq quiescent v ccaux supply current. xcvu3p 344 344 344 344 344 ma xcvu5p ma xcvu7p 686 686 686 686 686 ma xcvu9p 1015 1015 1015 1015 1015 ma xcvu11p ma xcvu13p ma i ccaux_ioq quiescent v ccaux_io supply current. xcvu3p 62 62 62 62 62 ma xcvu5p ma xcvu7p 124 124 124 124 124 ma xcvu9p 187 187 187 187 187 ma xcvu11p ma xcvu13p ma i ccbramq quiescent v ccbram supply current. xcvu3p 112 107 107 107 107 ma xcvu5p ma xcvu7p 224 214 214 214 214 ma xcvu9p 336 321 321 321 321 ma xcvu11p ma xcvu13p ma notes: 1. typical values are specified at nomina l voltage, 85c junction temperatures (t j ) with single-ended selectio? resources. 2. typical values are for blank configured devices with no output current loads, no active inpu t pull-up resistors, all i/o pins are 3-state and floating. 3. use the xilinx power estimator (xpe ) spreadsheet tool (download at www.xilinx.com/power ) to estimate static power consumption for conditions other than those specified. table 5: typical quiescent supply current (1)(2)(3) (cont?d) symbol description device speed grade and v ccint operating voltages units 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 9 power-on/off power supply sequencing the recommended power-on sequence is v ccint , v ccint_io /v ccbram , v ccaux /v ccaux_io , and v cco to achieve minimum current draw and ensure that the i/os are 3-stated at power-on. the recommended power-off sequence is the reverse of the power-on sequence. if v ccint and v ccint_io /v ccbram have the same recommended voltage levels, th ey can be powered by the same supply and ramped simultaneously. v ccint_io must be connected to v ccbram . if v ccaux /v ccaux_io and v cco have the same recommended voltage levels, they can be powered by the same supply and ramped simultaneously. v ccaux and v ccaux_io must be connected together. v ccadc and v ref can be powered at any time and have no power-up sequencing requirements. the recommended power-on sequence to achieve minimum current draw for the gty transceivers are v ccint , v mgtavcc , v mgtavtt or v mgtavcc , v ccint , v mgtavtt . there is no recommended sequencing for v mgtvccaux . both v mgtavcc and v ccint can be ramped simultaneous ly. the recommended power-off sequence is the reverse of the power-on sequence to achieve minimum current draw. if these recommended sequences are not met, current drawn from v mgtavtt can be higher than specifications during power-up and power-down. power supply requirements table 6 shows the minimum current, in addition to i ccq , that are required by virtex ultrascale+ fpgas for proper power-on and configuration. if the current minimums shown in table 5 and table 6 are met, the device powers on after all supplies have passed th rough their power-on reset threshold voltages. the device must not be configured until after v ccint is applied. once initialized and configured, use the xilinx power estimator (xpe) tools to estimate current drain on these supplies. table 6: power-on current by device device i ccintmin i ccint_iomin +i ccbrammin i ccomin i ccauxmin +i ccaux_iomin units xcvu3p i ccintq + 2000 i ccbramq +i ccint_ioq + 950 i ccoq +50 i ccauxq +i ccaux_ioq +350 ma xcvu5p i ccintq + 4000 i ccbramq +i ccint_ioq +1900 i ccoq +100 i ccauxq +i ccaux_ioq +700 ma xcvu7p i ccintq + 4000 i ccbramq +i ccint_ioq +1900 i ccoq +100 i ccauxq +i ccaux_ioq +700 ma xcvu9p i ccintq + 6000 i ccbramq +i ccint_ioq +2850 i ccoq +150 i ccauxq +i ccaux_ioq + 1050 ma xcvu11p i ccintq + 6549 i ccbramq +i ccint_ioq +3111 i ccoq +164 i ccauxq +i ccaux_ioq + 1146 ma xcvu13p i ccintq + 8731 i ccbramq +i ccint_ioq +4148 i ccoq +219 i ccauxq +i ccaux_ioq + 1528 ma s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 10 table 7 shows the power supply ramp time. table 7: power supply ramp time symbol description min max units t vccint ramp time from gnd to 95% of v ccint .0.240ms t vccint_io ramp time from gnd to 95% of v ccint_io .0.240ms t vcco ramp time from gnd to 95% of v cco .0.240ms t vccaux ramp time from gnd to 95% of v ccaux .0.240ms t vccbram ramp time from gnd to 95% of v ccbram .0.240ms t mgtavcc ramp time from gnd to 95% of v mgtavcc .0.240ms t mgtavtt ramp time from gnd to 95% of v mgtavtt .0.240ms t mgtvccaux ramp time from gnd to 95% of v mgtvccaux .0.240ms s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 11 dc input and output levels values for v il and v ih are recommended input voltages. values for i ol and i oh are guaranteed over the recommended operating conditions at the v ol and v oh test points. only selected standards are tested. these are chosen to ensure that all standards meet th eir specifications. the selected standards are tested at a minimum v cco with the respective v ol and v oh voltage levels shown. other standards are sample tested. table 8: selectio dc input and output levels for the i/o banks (1)(2)(3) i/o standard v il v ih v ol v oh i ol i oh v, min v, max v, min v, max v, max v, min ma ma hstl_i ?0.300 v ref ?0.100 v ref + 0.100 v cco + 0.300 0.400 v cco ? 0.400 5.8 ?5.8 hstl_i_12 ?0.300 v ref ?0.080 v ref + 0.080 v cco + 0.300 25% v cco 75% v cco 4.1 ?4.1 hstl_i_18 ?0.300 v ref ?0.100 v ref + 0.100 v cco + 0.300 0.400 v cco ? 0.400 6.2 ?6.2 hsul_12 ?0.300 v ref ?0.130 v ref + 0.130 v cco + 0.300 20% v cco 80% v cco 0.1 ?0.1 lvcmos12 ?0.300 35% v cco 65% v cco v cco + 0.300 0.400 v cco ?0.400 note 4 note 4 lvcmos15 ?0.300 35% v cco 65% v cco v cco + 0.300 0.450 v cco ?0.450 note 5 note 5 lvcmos18 ?0.300 35% v cco 65% v cco v cco + 0.300 0.450 v cco ?0.450 note 5 note 5 lvdci_15 ?0.300 35% v cco 65% v cco v cco + 0.300 0.450 v cco ? 0.450 7.0 ?7.0 lvdci_18 ?0.300 35% v cco 65% v cco v cco + 0.300 0.450 v cco ? 0.450 7.0 ?7.0 sstl12 ?0.300 v ref ?0.100 v ref + 0.100 v cco +0.300 v cco /2?0.150 v cco /2 + 0.150 8.0 ?8.0 sstl135 ?0.300 v ref ?0.090 v ref + 0.090 v cco +0.300 v cco /2?0.150 v cco /2 + 0.150 9.0 ?9.0 sstl15 ?0.300 v ref ?0.100 v ref + 0.100 v cco +0.300 v cco /2?0.175 v cco /2 + 0.175 10.0 ?10.0 sstl18_i ?0.300 v ref ?0.125 v ref + 0.125 v cco +0.300 v cco /2?0.470 v cco /2 + 0.470 7.0 ?7.0 mipi_dphy_ dci_lp (6) ?0.300 0.550 0.880 v cco + 0.300 0.050 1.100 0.01 ?0.01 notes: 1. tested according to relevant specifications. 2. standards specified using the default i/o st andard configuration. for details, see the ultrascale architecture selectio resources user guide ( ug571 ). 3. pod10 and pod12 dc input and output levels are shown in table 9 , table 13 , and table 14 . 4. supported drive streng ths of 2, 4, 6, or 8 ma in the i/o banks. 5. supported drive strength s of 2, 4, 6, 8, or 12 ma in the i/o banks. 6. low-power option for mipi_dphy_dci. table 9: dc input levels for single-ended pod10 and pod12 i/o standards (1)(2) i/o standard v il v ih v, min v, max v, min v, max pod10 ?0.300 v ref ? 0.068 v ref +0.068 v cco + 0.300 pod12 ?0.300 v ref ? 0.068 v ref +0.068 v cco + 0.300 notes: 1. tested according to relevant specifications. 2. standards specified using the default i/o st andard configuration. for details, see the ultrascale architecture selectio resources user guide ( ug571 ). s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 12 table 10: differential selectio dc input and output levels i/o standard v icm (v) (1) v id (v) (2) v ilhs (3) v ihhs (3) v ocm (v) (4) v od (v) (5) min typ max min typ max min max min typ max min typ max sub_lvds 0.500 0.900 1.300 0.070 ? ? ? ? 0.700 0.900 1.100 0.100 0.150 0.200 slvs_400_18 0.070 0.200 0.330 0.140 ? 0.450 ? ? ? ? ? ? ? ? mipi_dphy_ dci_hs (7) 0.070 ? 0.330 0.070 ? ? ?0.040 0.460 0.150 0.200 0.250 0.140 0.200 0.270 notes: 1. v icm is the input common mode voltage. 2. v id is the input differential voltage (q ? q ). 3. v ihhs and v ilhs are the single-ended input high and low voltages, respectively. 4. v ocm is the output common mode voltage. 5. v od is the output differential voltage (q ? q ). 6. lvds is specified in table 15 . 7. high-speed option for mipi_dphy_dci. the v id maximum is aligned with the standard?s specification. a higher v id is acceptable as long as the v in specification is also met. table 11: complementary differential selectio dc in put and output levels for the i/o banks (1) i/o standard v icm (v) (2) v id (v) (3) v ol (v) (4) v oh (v) (5) i ol i oh min typ max min max max min ma ma diff_hstl_i 0.680 v cco /2 (v cco /2) + 0.150 0.100 ? 0.400 v cco ? 0.400 5.8 ?5.8 diff_hstl_i_12 0.400 x v cco v cco /2 0.600 x v cco 0.100 ? 0.250 x v cco 0.750 x v cco 4.1 ?4.1 diff_hstl_i_18 (v cco /2) ? 0.175 v cco /2 (v cco /2) + 0.175 0.100 ? 0.400 v cco ? 0.400 6.2 ?6.2 diff_hsul_12 (v cco /2) ? 0.120 v cco /2 (v cco /2) + 0.120 0.100 ? 20% v cco 80% v cco 0.1 ?0.1 diff_sstl12 (v cco /2) ? 0.150 v cco /2 (v cco /2) + 0.150 0.100 ? (v cco /2) ? 0.150 (v cco /2) + 0.150 8.0 ?8.0 diff_sstl135 (v cco /2) ? 0.150 v cco /2 (v cco /2) + 0.150 0.100 ? (v cco /2) ? 0.150 (v cco /2) + 0.150 9.0 ?9.0 diff_sstl15 (v cco /2) ? 0.175 v cco /2 (v cco /2) + 0.175 0.100 ? (v cco /2) ? 0.175 (v cco /2) + 0.175 10.0 ?10.0 diff_sstl18_i (v cco /2) ? 0.175 v cco /2 (v cco /2) + 0.175 0.100 ? (v cco /2) ? 0.470 (v cco /2) + 0.470 7.0 ?7.0 notes: 1. diff_pod10 and diff_pod12 hp i/o ba nk specifications are shown in table 12 , table 13 , and table 14 . 2. v icm is the input common mode voltage. 3. v id is the input differential voltage. 4. v ol is the single-ended low-output voltage. 5. v oh is the single-ended high-output voltage. table 12: dc input levels for differentia l pod10 and pod12 i/o standards (1)(2) i/o standard v icm (v) v id (v) min typ max min max diff_pod10 0.63 0.70 0.77 0.14 ? diff_pod12 0.76 0.84 0.92 0.16 ? notes: 1. tested according to relevant specifications. 2. standards specified using the default i/o st andard configuration. for details, see the ultrascale architecture selectio resources user guide ( ug571 ). s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 13 lvds dc specifications (lvds) table 13: dc output levels for sing le-ended and differential pod10 and pod12 standards (1)(2) symbol description v out min typ max units r ol pull-down resistance. v om_dc (as described in table 14 ) 364044 r oh pull-up resistance. v om_dc (as described in table 14 ) 364044 notes: 1. tested according to relevant specifications. 2. standards specified using the default i/o st andard configuration. for details, see the ultrascale architecture selectio resources user guide ( ug571 ). table 14: table 13 definitions for dc output levels for pod standards symbol description all speed grades units v om_dc dc output mid measurement level (for iv curve linearity). 0.8 x v cco v table 15: lvds dc specifications symbol dc parameter conditions min typ max units v cco (1) supply voltage. 1.710 1.800 1.890 v v odiff (2) differential output voltage: (q ? q ), q = high (q ?q), q =high r t =100 across q and q signals 247 350 600 mv v ocm (2) output common-mode voltage. r t =100 across q and q signals 1.000 1.250 1.425 v v idiff differential input voltage: (q ? q ), q = high (q ?q), q =high 100 350 600 (3) mv v icm_dc (4) input common-mode voltage (dc coupling). 0.300 1.200 1.425 v v icm_ac (5) input common-mode voltage (ac coupling). 0.600 ? 1.100 v notes: 1. when lvds in hp i/o banks is used with input only functionality, it can be pl aced in a bank where the v cco levels are different from the specified level prov ided internal differenti al termination is not used. in this scenario, v cco must be chosen to ensure the input pin voltage levels do not violate the recommended operating condition ( table 2 ) specification for the v in i/o pin voltage. 2. v ocm and v odiff values are for lvds_pre_emphasis = false. 3. maximum v idiff value is specified for the maximum v icm specification. with a lower v icm , a higher v diff is tolerated only when the recommended operating cond itions and oversh oot/undershoot v in specifications are maintained. 4. input common mode voltage for dc coupled co nfigurations. equalization = eq_none (default). 5. external input common mode voltage specification for ac coupled configurations . equalization = eq_level0, eq_level1, eq_level2, eq_level3, eq_level4. s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 14 ac switching characteristics all values represented in this data sheet are based on the speed specifications in the vivado? design suite as outlined in table 16 . switching characteristics are specified on a per-spee d-grade basis and can be designated as advance, preliminary, or production. each designation is defined as follows: advance product specification these specifications are based on simulations only an d are typically available so on after device design specifications are frozen. although speed grades with this designation are consider ed relatively stable and conservative, some under-rep orting might still occur. preliminary product specification these specifications are based on complete es (engin eering sample) silicon characterization. devices and speed grades with this designation are intended to gi ve a better indication of the expected performance of production silicon. the probability of under-repo rting delays is greatly reduced as compared to advance data. product specification these specifications are released once enough producti on silicon of a particular device family member has been characterized to provide full correlation be tween specifications and devices over numerous production lots. there is no under-reporting of dela ys, and customers receive formal notification of any subsequent changes. typically, the slowest speed grades transition to production before faster speed grades. testing of ac switching characteristics internal timing parameters are derived from meas uring internal test patt erns. all ac switching characteristics are representative of worst-case supply voltage and junction temperature conditions. for more specific, more precise, and worst-case guar anteed data, use the values reported by the static timing analyzer and back-annotate to the simulation net list. unless otherwise noted, values apply to all virtex ultrascale+ fpgas. table 16: speed specification version by device 2016.1 device 1.02 xcvu3p, xcvu7p, xcvu9p , xcvu5p, xcvu11p, xcvu13p s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 15 speed grade designations since individual family members are produced at di fferent times, the migration from one category to another depends completely on the status of the fabrication process for each device. table 16 correlates the current status of the virtex ultras cale+ fpga on a per speed grade basis. table 17: speed grade designations by device device speed grade, temper ature ranges, and v ccint operating voltages advance preliminary production xcvu3p -3e (v ccint =0.90v) -2i (v ccint = 0.85v), -2le (v ccint =0.85v) -1e (v ccint = 0.85v), -1i (v ccint = 0.85v), -1li (v ccint =0.85v) -2le (v ccint = 0.72v), -1li (v ccint = 0.72v) xcvu5p -3e (v ccint =0.90v) -2i (v ccint = 0.85v), -2le (v ccint =0.85v) -1e (v ccint = 0.85v), -1i (v ccint = 0.85v), -1li (v ccint =0.85v) -2le (v ccint = 0.72v), -1li (v ccint = 0.72v) xcvu7p -3e (v ccint =0.90v) -2i (v ccint = 0.85v), -2le (v ccint =0.85v) -1e (v ccint = 0.85v), -1i (v ccint = 0.85v), -1li (v ccint =0.85v) -2le (v ccint = 0.72v), -1li (v ccint = 0.72v) xcvu9p -3e (v ccint =0.90v) -2i (v ccint = 0.85v), -2le (v ccint =0.85v) -1e (v ccint = 0.85v), -1i (v ccint = 0.85v), -1li (v ccint =0.85v) -2le (v ccint = 0.72v), -1li (v ccint = 0.72v) xcvu11p -3e (v ccint =0.90v) -2i (v ccint = 0.85v), -2le (v ccint =0.85v) -1e (v ccint = 0.85v), -1i (v ccint = 0.85v), -1li (v ccint =0.85v) -2le (v ccint = 0.72v), -1li (v ccint = 0.72v) xcvu13p -3e (v ccint =0.90v) -2i (v ccint = 0.85v), -2le (v ccint =0.85v) -1e (v ccint = 0.85v), -1i (v ccint = 0.85v), -1li (v ccint =0.85v) -2le (v ccint = 0.72v), -1li (v ccint = 0.72v) s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 16 production silicon and software status in some cases, a particular family member (and speed grade) is released to production before a speed specification is released with th e correct label (advance, prelimin ary, production). any labeling discrepancies are corrected in subseq uent speed specification releases. table 18 lists the production released virtex ultrascale+ fpga, speed grade, and the minimum corresponding supported speed specification version an d vivado software revisions. the vivado software and speed specifications listed are the minimum releases required for production. all subsequent releases of software and speed specifications are valid. table 18: virtex ultrascale+ fpga device production software and speed specification release device speed grade and v ccint operating voltages 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 xcvu3p xcvu5p xcvu7p xcvu9p xcvu11p xcvu13p notes: 1. blank entries indicate a device and/or sp eed grade in advance or preliminary status. s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 17 fpga logic performance characteristics this section provides the performance characte ristics of some common functions and designs implemented in virtex ultrascale+ fpgas. these valu es are subject to the same guidelines as the ac switching characteristics, page 14 . table 19: lvds component mode performance description speed grade and v ccint operating voltages units 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 lvds tx ddr (oserdes 4:1, 8:1) 1250 1250 1250 1250 1250 mb/s lvds tx sdr (oserdes 2:1, 4:1) 710 710 625 710 625 mb/s lvds rx ddr (iserdes 1:4, 1:8) (1) 1250 1250 1250 1250 1250 mb/s lvds rx sdr (iserdes 1:2, 1:4) (1) 710 710 625 710 625 mb/s notes: 1. lvds receivers are typically bounded with certain applications where specif ic dynamic phase-alignment (dpa) or phase-tracking algorithms are used to achieve maximum performance. table 20: lvds native mode performance (1) description speed grade and v ccint operating voltages units 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 lvds tx ddr (tx_bitslice 4:1, 8:1) 1600 1600 1250 1600 1250 mb/s lvds tx sdr (tx_bitslice 2:1, 4:1) 800 800 625 800 625 mb/s lvds rx ddr (rx_bitslice 1:4, 1:8) (2) 1600 1600 1250 1600 1250 mb/s lvds rx sdr (rx_bitslice 1:2, 1:4) (2) 800 800 625 800 625 mb/s notes: 1. native mode is supported through the high-speed selectio interface wizard available with the vivado design suite. 2. lvds receivers are typically bounded with certain applications where specif ic dynamic phase-alignment (dpa) or phase-tracking algorithms are used to achieve maximum performance. table 21: lvds native-mode 1000base-x support (1) description speed grade and v ccint operating voltages 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 1000base-x yes notes: 1. 1000base-x support is based on the ieee standard for csma/cd access me thod and physical layer specifications (ieee std 802.3-2008). s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 18 table 22 provides the maximum data rates for applicable memory standards using the virtex ultrascale+ fpga memory phy. refer to memory interfaces for the complete list of memory interface standards supported and detailed specifications. the final perf ormance of the memory interface is determined through a complete design implemented in the viva do design suite, following guidelines in the ultrascale architecture pc b design guide ( ug583 ), electrical analysis, and ch aracterization of the system. iob pad input, output, and 3-state table 23 , high-performance iob (hp), summarizes the valu es of standard-specific data input delay adjustments, output delays terminating at pa ds (based on standard) and 3-state delays. ? t inbuf_delay_pad_i is the delay from iob pad through the inpu t buffer to the i-pin of an iob pad. the delay varies depending on the capa bility of the selectio input buffer. ? t outbuf_delay_o_pad is the delay from the o pin to the iob pad through the output buffer of an iob pad. the delay varies depending on the ca pability of the selectio output buffer. ? t outbuf_delay_td_pad is the delay from the t pin to the iob pad through the output buffer of an iob pad, when 3-state is disabled. the delay varies de pending on the selectio capability of the output buffer. in hp i/o banks, the internal dci termi nation turn-on time is always faster than t outbuf_delay_td_pad when the dcitermdisable pin is used. table 22: maximum physical interface (phy ) rate for memory interfaces memory standard dram type speed grade and v ccint operating voltages units 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 ddr4 single rank component 2666 2666 2400 2400 2133 mb/s 1 rank dimm (1)(2) 2400 2400 2133 2133 1866 mb/s 2 rank dimm (1)(3) 2133 2133 1866 1866 1600 mb/s 4 rank dimm (1)(4) 1600 1600 1333 1333 n/a mb/s ddr3 single rank component 2133 2133 2133 2133 1866 mb/s 1 rank dimm (1)(2) 1866 1866 1866 1866 1600 mb/s 2 rank dimm (1)(3) 1600 1600 1600 1600 1333 mb/s 4 rank dimm (1)(4) 1066 1066 1066 1066 800 mb/s ddr3l single rank component 1866 1866 1866 1866 1600 mb/s 1 rank dimm (1)(2) 1600 1600 1600 1600 1333 mb/s 2 rank dimm (1)(3) 1333 1333 1333 1333 1066 mb/s 4 rank dimm (1)(4) 800 800 800 800 606 mb/s qdr ii+ single rank component (5) 633 633 600 600 550 mhz rldram 3 single rank component 1200 1200 1066 1066 933 mhz qdr iv xp single rank component (6) 1066 1066 1066 933 933 mhz lpddr3 single rank component 1600 1600 1600 1600 1600 mb/s notes: 1. dual in-line memory module (dimm) incl udes rdimm, sodimm, udimm, and lrdimm. 2. includes: 1 rank 1 slot, ddp 2 rank, lrdimm 2 or 4 rank 1 slot. 3. includes: 2 rank 1 slot, 1 rank 2 slot, lrdimm 2 rank 2 slot. 4. includes: 2 rank 2 slot, 4 rank 1 slot. 5. the qdrii+ performance spec ifications are for burst-leng th 4 (bl = 4) implementations. 6. this memory interface is not production qua lified and specification is subject to change. s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 19 table 23: iob high performance (hp) switching characteristics i/o standards t inbuf_delay_pad_i t outbuf_delay_o_pad t outbuf_delay_td_pad units 0.90v 0.85v 0.72v 0.90v 0.85v 0.72v 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 -3 -2 -1 -2 -1 -3 -2 -1 -2 -1 diff_hstl_i_12_f 0.277 0.335 0.342 0.335 0.321 0.402 0.396 0.414 0.396 0.383 0.402 0.396 0.414 0.396 0.383 ns diff_hstl_i_12_m 0.277 0.335 0.342 0.335 0.321 0.402 0.395 0.414 0.395 0.383 0.402 0.395 0.414 0.395 0.383 ns diff_hstl_i_12_s 0.277 0.335 0.342 0.335 0.321 0.402 0.396 0.414 0.396 0.383 0.402 0.396 0.414 0.396 0.383 ns diff_hstl_i_18_f 0.285 0.314 0.334 0.314 0.328 0.388 0.396 0.413 0.396 0.388 0.388 0.396 0.413 0.396 0.388 ns diff_hstl_i_18_m 0.285 0.314 0.334 0.314 0.328 0.388 0.393 0.413 0.393 0.389 0.388 0.393 0.413 0.393 0.389 ns diff_hstl_i_18_s 0.285 0.314 0.334 0.314 0.328 0.388 0.394 0.413 0.391 0.387 0.388 0.394 0.413 0.391 0.387 ns diff_hstl_i_dci_12_f 0.277 0.335 0.342 0.335 0.321 0.422 0.420 0.444 0.421 0.414 0.422 0.420 0.444 0.421 0.414 ns diff_hstl_i_dci_12_m 0.277 0.335 0.342 0.335 0.321 0.422 0.420 0.444 0.422 0.412 0.422 0.420 0.444 0.422 0.412 ns diff_hstl_i_dci_12_s 0.277 0.335 0.342 0.335 0.321 0.422 0.421 0.442 0.421 0.412 0.422 0.421 0.442 0.421 0.412 ns diff_hstl_i_dci_18_f 0.284 0.314 0.331 0.314 0.331 0.418 0.425 0.440 0.424 0.417 0.418 0.425 0.440 0.424 0.417 ns diff_hstl_i_dci_18_m 0.284 0.314 0.331 0.314 0.331 0.418 0.424 0.443 0.423 0.416 0.418 0.424 0.443 0.423 0.416 ns diff_hstl_i_dci_18_s 0.284 0.314 0.331 0.314 0.331 0.418 0.424 0.443 0.424 0.417 0.418 0.424 0.443 0.424 0.417 ns diff_hstl_i_dci_f 0.294 0.313 0.330 0.313 0.320 0.420 0.423 0.438 0.421 0.415 0.420 0.423 0.438 0.421 0.415 ns diff_hstl_i_dci_m 0.294 0.313 0.330 0.313 0.320 0.420 0.423 0.440 0.423 0.416 0.420 0.423 0.440 0.423 0.416 ns diff_hstl_i_dci_s 0.294 0.313 0.330 0.313 0.320 0.420 0.421 0.440 0.417 0.414 0.420 0.421 0.440 0.417 0.414 ns diff_hstl_i_f 0.295 0.330 0.341 0.330 0.320 0.393 0.391 0.411 0.394 0.385 0.393 0.391 0.411 0.394 0.385 ns diff_hstl_i_m 0.295 0.330 0.341 0.330 0.320 0.392 0.393 0.413 0.397 0.386 0.392 0.393 0.413 0.397 0.386 ns diff_hstl_i_s 0.295 0.330 0.341 0.330 0.320 0.393 0.393 0.413 0.394 0.384 0.393 0.393 0.413 0.394 0.384 ns diff_hsul_12_dci_f 0.283 0.327 0.344 0.327 0.317 0.428 0.421 0.440 0.421 0.412 0.428 0.421 0.440 0.421 0.412 ns diff_hsul_12_dci_m 0.283 0.327 0.344 0.327 0.317 0.428 0.421 0.440 0.421 0.412 0.428 0.421 0.440 0.421 0.412 ns diff_hsul_12_dci_s 0.283 0.327 0.344 0.327 0.317 0.428 0.421 0.440 0.421 0.412 0.428 0.421 0.440 0.421 0.412 ns diff_hsul_12_f 0.277 0.335 0.342 0.335 0.321 0.402 0.396 0.414 0.396 0.383 0.402 0.396 0.414 0.396 0.383 ns diff_hsul_12_m 0.277 0.335 0.342 0.335 0.321 0.402 0.395 0.414 0.395 0.383 0.402 0.395 0.414 0.395 0.383 ns diff_hsul_12_s 0.277 0.335 0.342 0.335 0.321 0.402 0.395 0.414 0.395 0.383 0.402 0.395 0.414 0.395 0.383 ns diff_pod10_dci_f 0.286 0.325 0.340 0.325 0.334 0.438 0.431 0.451 0.431 0.418 0.438 0.431 0.451 0.431 0.418 ns diff_pod10_dci_m 0.286 0.325 0.340 0.325 0.334 0.592 0.627 0.660 0.627 0.622 0.592 0.627 0.660 0.627 0.622 ns diff_pod10_dci_s 0.286 0.325 0.340 0.325 0.334 0.823 0.900 0.974 0.900 0.888 0.823 0.900 0.974 0.900 0.888 ns diff_pod10_f 0.277 0.314 0.331 0.314 0.317 0.412 0.406 0.426 0.406 0.392 0.412 0.406 0.426 0.406 0.392 ns diff_pod10_m 0.277 0.314 0.331 0.314 0.317 0.570 0.593 0.627 0.593 0.588 0.570 0.593 0.627 0.593 0.588 ns diff_pod10_s 0.277 0.314 0.331 0.314 0.317 0.800 0.853 0.914 0.853 0.835 0.800 0.853 0.914 0.853 0.835 ns diff_pod12_dci_f 0.275 0.314 0.333 0.314 0.318 0.428 0.421 0.440 0.421 0.412 0.428 0.421 0.440 0.421 0.412 ns diff_pod12_dci_m 0.275 0.314 0.333 0.314 0.318 0.586 0.628 0.662 0.628 0.623 0.586 0.628 0.662 0.628 0.623 ns diff_pod12_dci_s 0.275 0.314 0.333 0.314 0.318 0.813 0.899 0.959 0.899 0.892 0.813 0.899 0.959 0.899 0.892 ns diff_pod12_f 0.275 0.323 0.341 0.323 0.316 0.402 0.396 0.414 0.395 0.383 0.402 0.396 0.414 0.395 0.383 ns diff_pod12_m 0.275 0.323 0.341 0.323 0.316 0.562 0.595 0.629 0.595 0.589 0.562 0.595 0.629 0.595 0.589 ns diff_pod12_s 0.275 0.323 0.341 0.323 0.316 0.789 0.844 0.899 0.844 0.835 0.789 0.844 0.899 0.844 0.835 ns diff_sstl12_dci_f 0.283 0.327 0.344 0.327 0.317 0.428 0.421 0.440 0.421 0.412 0.428 0.421 0.440 0.421 0.412 ns diff_sstl12_dci_m 0.283 0.327 0.344 0.327 0.317 0.584 0.630 0.664 0.628 0.624 0.584 0.630 0.664 0.628 0.624 ns diff_sstl12_dci_s 0.283 0.327 0.344 0.327 0.317 0.813 0.899 0.959 0.899 0.892 0.813 0.899 0.959 0.899 0.892 ns diff_sstl12_f 0.277 0.335 0.342 0.335 0.321 0.402 0.396 0.414 0.396 0.383 0.402 0.396 0.414 0.396 0.383 ns diff_sstl12_m 0.277 0.335 0.342 0.335 0.321 0.561 0.597 0.631 0.597 0.591 0.561 0.597 0.631 0.597 0.591 ns s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 20 diff_sstl12_s 0.277 0.335 0.342 0.335 0.321 0.789 0.844 0.899 0.844 0.835 0.789 0.844 0.899 0.844 0.835 ns diff_sstl135_dci_f 0.278 0.312 0.339 0.312 0.319 0.426 0.420 0.439 0.422 0.414 0.426 0.420 0.439 0.422 0.414 ns diff_sstl135_dci_m 0.278 0.312 0.339 0.312 0.319 0.586 0.630 0.666 0.630 0.626 0.586 0.630 0.666 0.630 0.626 ns diff_sstl135_dci_s 0.278 0.312 0.339 0.312 0.319 0.814 0.902 0.966 0.895 0.896 0.814 0.902 0.966 0.895 0.896 ns diff_sstl135_f 0.289 0.313 0.336 0.313 0.315 0.397 0.392 0.412 0.394 0.385 0.397 0.392 0.412 0.394 0.385 ns diff_sstl135_m 0.289 0.313 0.336 0.313 0.315 0.565 0.599 0.633 0.598 0.593 0.565 0.599 0.633 0.598 0.593 ns diff_sstl135_s 0.289 0.313 0.336 0.313 0.315 0.789 0.850 0.907 0.849 0.841 0.789 0.850 0.907 0.849 0.841 ns diff_sstl15_dci_f 0.294 0.313 0.330 0.313 0.320 0.424 0.421 0.439 0.423 0.422 0.424 0.421 0.439 0.423 0.422 ns diff_sstl15_dci_m 0.294 0.313 0.330 0.313 0.320 0.591 0.632 0.667 0.632 0.627 0.591 0.632 0.667 0.632 0.627 ns diff_sstl15_dci_s 0.294 0.313 0.330 0.313 0.320 0.816 0.906 0.971 0.906 0.898 0.816 0.906 0.971 0.906 0.898 ns diff_sstl15_f 0.295 0.330 0.341 0.330 0.320 0.393 0.392 0.412 0.392 0.386 0.393 0.392 0.412 0.392 0.386 ns diff_sstl15_m 0.295 0.330 0.341 0.330 0.320 0.564 0.598 0.633 0.598 0.592 0.564 0.598 0.633 0.598 0.592 ns diff_sstl15_s 0.295 0.330 0.341 0.330 0.320 0.790 0.853 0.910 0.850 0.844 0.790 0.853 0.910 0.850 0.844 ns diff_sstl18_i_dci_f 0.284 0.314 0.331 0.314 0.331 0.418 0.425 0.440 0.424 0.416 0.418 0.425 0.440 0.424 0.416 ns diff_sstl18_i_dci_m 0.284 0.314 0.331 0.314 0.331 0.593 0.633 0.670 0.634 0.629 0.593 0.633 0.670 0.634 0.629 ns diff_sstl18_i_dci_s 0.284 0.314 0.331 0.314 0.331 0.821 0.910 0.978 0.911 0.903 0.821 0.910 0.978 0.911 0.903 ns diff_sstl18_i_f 0.285 0.314 0.334 0.314 0.328 0.388 0.395 0.415 0.392 0.387 0.388 0.395 0.415 0.392 0.387 ns diff_sstl18_i_m 0.285 0.314 0.334 0.314 0.328 0.567 0.603 0.638 0.603 0.596 0.567 0.603 0.638 0.603 0.596 ns diff_sstl18_i_s 0.285 0.314 0.334 0.314 0.328 0.794 0.861 0.920 0.860 0.851 0.794 0.861 0.920 0.860 0.851 ns hslvdci_15_f 0.343 0.364 0.384 0.364 0.360 0.424 0.422 0.440 0.421 0.418 0.424 0.422 0.440 0.421 0.418 ns hslvdci_15_m 0.343 0.364 0.384 0.364 0.360 0.424 0.420 0.441 0.424 0.413 0.424 0.420 0.441 0.424 0.413 ns hslvdci_15_s 0.343 0.364 0.384 0.364 0.360 0.424 0.421 0.440 0.421 0.417 0.424 0.421 0.440 0.421 0.417 ns hslvdci_18_f 0.343 0.365 0.386 0.365 0.361 0.420 0.425 0.440 0.424 0.416 0.420 0.425 0.440 0.424 0.416 ns hslvdci_18_m 0.343 0.365 0.386 0.365 0.361 0.423 0.424 0.440 0.423 0.418 0.423 0.424 0.440 0.423 0.418 ns hslvdci_18_s 0.343 0.365 0.386 0.365 0.361 0.420 0.423 0.443 0.425 0.414 0.420 0.423 0.443 0.425 0.414 ns hstl_i_12_f 0.342 0.363 0.384 0.363 0.360 0.402 0.396 0.414 0.396 0.383 0.402 0.396 0.414 0.396 0.383 ns hstl_i_12_m 0.342 0.363 0.384 0.363 0.360 0.402 0.395 0.414 0.395 0.383 0.402 0.395 0.414 0.395 0.383 ns hstl_i_12_s 0.342 0.363 0.384 0.363 0.360 0.402 0.396 0.414 0.396 0.383 0.402 0.396 0.414 0.396 0.383 ns hstl_i_18_f 0.343 0.365 0.386 0.365 0.361 0.388 0.396 0.413 0.396 0.388 0.388 0.396 0.413 0.396 0.388 ns hstl_i_18_m 0.343 0.365 0.386 0.365 0.361 0.388 0.393 0.413 0.393 0.389 0.388 0.393 0.413 0.393 0.389 ns hstl_i_18_s 0.343 0.365 0.386 0.365 0.361 0.388 0.394 0.413 0.391 0.387 0.388 0.394 0.413 0.391 0.387 ns hstl_i_dci_12_f 0.342 0.363 0.384 0.363 0.360 0.422 0.420 0.444 0.421 0.414 0.422 0.420 0.444 0.421 0.414 ns hstl_i_dci_12_m 0.342 0.363 0.384 0.363 0.360 0.422 0.420 0.444 0.422 0.412 0.422 0.420 0.444 0.422 0.412 ns hstl_i_dci_12_s 0.342 0.363 0.384 0.363 0.360 0.422 0.421 0.442 0.421 0.412 0.422 0.421 0.442 0.421 0.412 ns hstl_i_dci_18_f 0.343 0.365 0.386 0.365 0.361 0.418 0.425 0.440 0.424 0.417 0.418 0.425 0.440 0.424 0.417 ns hstl_i_dci_18_m 0.343 0.365 0.386 0.365 0.361 0.418 0.424 0.443 0.423 0.416 0.418 0.424 0.443 0.423 0.416 ns hstl_i_dci_18_s 0.343 0.365 0.386 0.365 0.361 0.418 0.424 0.443 0.424 0.417 0.418 0.424 0.443 0.424 0.417 ns hstl_i_dci_f 0.343 0.364 0.384 0.364 0.360 0.420 0.423 0.438 0.421 0.415 0.420 0.423 0.438 0.421 0.415 ns hstl_i_dci_m 0.343 0.364 0.384 0.364 0.360 0.420 0.423 0.440 0.423 0.416 0.420 0.423 0.440 0.423 0.416 ns hstl_i_dci_s 0.343 0.364 0.384 0.364 0.360 0.420 0.421 0.440 0.417 0.414 0.420 0.421 0.440 0.417 0.414 ns hstl_i_f 0.342 0.363 0.384 0.363 0.360 0.393 0.391 0.411 0.394 0.385 0.393 0.391 0.411 0.394 0.385 ns table 23: iob high performance (hp) switching characteristics (cont?d) i/o standards t inbuf_delay_pad_i t outbuf_delay_o_pad t outbuf_delay_td_pad units 0.90v 0.85v 0.72v 0.90v 0.85v 0.72v 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 -3 -2 -1 -2 -1 -3 -2 -1 -2 -1 s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 21 hstl_i_m 0.342 0.363 0.384 0.363 0.360 0.392 0.393 0.413 0.397 0.386 0.392 0.393 0.413 0.397 0.386 ns hstl_i_s 0.342 0.363 0.384 0.363 0.360 0.393 0.393 0.413 0.394 0.384 0.393 0.393 0.413 0.394 0.384 ns hsul_12_dci_f 0.343 0.363 0.384 0.363 0.360 0.428 0.421 0.440 0.421 0.412 0.428 0.421 0.440 0.421 0.412 ns hsul_12_dci_m 0.343 0.363 0.384 0.363 0.360 0.428 0.421 0.440 0.421 0.412 0.428 0.421 0.440 0.421 0.412 ns hsul_12_dci_s 0.343 0.363 0.384 0.363 0.360 0.428 0.421 0.440 0.421 0.412 0.428 0.421 0.440 0.421 0.412 ns hsul_12_f 0.342 0.363 0.384 0.363 0.360 0.402 0.396 0.414 0.396 0.383 0.402 0.396 0.414 0.396 0.383 ns hsul_12_m 0.342 0.363 0.384 0.363 0.360 0.402 0.395 0.414 0.395 0.383 0.402 0.395 0.414 0.395 0.383 ns hsul_12_s 0.342 0.363 0.384 0.363 0.360 0.402 0.395 0.414 0.395 0.383 0.402 0.395 0.414 0.395 0.383 ns lvcmos12_f_2 0.476 0.552 0.600 0.552 0.557 0.865 0.841 0.867 0.839 0.820 0.865 0.841 0.867 0.839 0.820 ns lvcmos12_f_4 0.476 0.552 0.600 0.552 0.557 0.640 0.642 0.665 0.635 0.624 0.640 0.642 0.665 0.635 0.624 ns lvcmos12_f_6 0.476 0.552 0.600 0.552 0.557 0.533 0.515 0.540 0.515 0.502 0.533 0.515 0.540 0.515 0.502 ns lvcmos12_f_8 0.476 0.552 0.600 0.552 0.557 0.476 0.472 0.498 0.477 0.461 0.476 0.472 0.498 0.477 0.461 ns lvcmos12_m_2 0.476 0.552 0.600 0.552 0.557 0.904 0.899 0.923 0.893 0.881 0.904 0.899 0.923 0.893 0.881 ns lvcmos12_m_4 0.476 0.552 0.600 0.552 0.557 0.740 0.741 0.773 0.741 0.733 0.740 0.741 0.773 0.741 0.733 ns lvcmos12_m_6 0.476 0.552 0.600 0.552 0.557 0.634 0.655 0.690 0.657 0.648 0.634 0.655 0.690 0.657 0.648 ns lvcmos12_m_8 0.476 0.552 0.600 0.552 0.557 0.633 0.672 0.712 0.672 0.665 0.633 0.672 0.712 0.672 0.665 ns lvcmos12_s_2 0.476 0.552 0.600 0.552 0.557 0.974 0.976 1.022 0.976 0.963 0.974 0.976 1.022 0.976 0.963 ns lvcmos12_s_4 0.476 0.552 0.600 0.552 0.557 0.861 0.902 0.956 0.902 0.888 0.861 0.902 0.956 0.902 0.888 ns lvcmos12_s_6 0.476 0.552 0.600 0.552 0.557 0.821 0.890 0.943 0.890 0.876 0.821 0.890 0.943 0.890 0.876 ns lvcmos12_s_8 0.476 0.552 0.600 0.552 0.557 0.871 0.947 1.020 0.947 0.939 0.871 0.947 1.020 0.947 0.939 ns lvcmos15_f_12 0.395 0.443 0.478 0.443 0.439 0.422 0.417 0.436 0.417 0.408 0.422 0.417 0.436 0.417 0.408 ns lvcmos15_f_2 0.395 0.443 0.478 0.443 0.439 0.847 0.837 0.861 0.832 0.819 0.847 0.837 0.861 0.832 0.819 ns lvcmos15_f_4 0.395 0.443 0.478 0.443 0.439 0.637 0.633 0.658 0.633 0.621 0.637 0.633 0.658 0.633 0.621 ns lvcmos15_f_6 0.395 0.443 0.478 0.443 0.439 0.517 0.511 0.532 0.511 0.501 0.517 0.511 0.532 0.511 0.501 ns lvcmos15_f_8 0.395 0.443 0.478 0.443 0.439 0.472 0.469 0.488 0.468 0.457 0.472 0.469 0.488 0.468 0.457 ns lvcmos15_m_12 0.395 0.443 0.478 0.443 0.439 0.669 0.73 0.775 0.73 0.723 0.669 0.73 0.775 0.73 0.723 ns lvcmos15_m_2 0.395 0.443 0.478 0.443 0.439 0.898 0.895 0.93 0.895 0.883 0.898 0.895 0.93 0.895 0.883 ns lvcmos15_m_4 0.395 0.443 0.478 0.443 0.439 0.726 0.743 0.774 0.743 0.731 0.726 0.743 0.774 0.743 0.731 ns lvcmos15_m_6 0.395 0.443 0.478 0.443 0.439 0.633 0.658 0.691 0.659 0.642 0.633 0.658 0.691 0.659 0.642 ns lvcmos15_m_8 0.395 0.443 0.478 0.443 0.439 0.635 0.673 0.714 0.673 0.669 0.635 0.673 0.714 0.673 0.669 ns lvcmos15_s_12 0.395 0.443 0.478 0.443 0.439 1.002 1.119 1.216 1.122 1.112 1.002 1.119 1.216 1.122 1.112 ns lvcmos15_s_2 0.395 0.443 0.478 0.443 0.439 0.967 0.979 1.022 0.977 0.965 0.967 0.979 1.022 0.977 0.965 ns lvcmos15_s_4 0.395 0.443 0.478 0.443 0.439 0.861 0.907 0.959 0.907 0.894 0.861 0.907 0.959 0.907 0.894 ns lvcmos15_s_6 0.395 0.443 0.478 0.443 0.439 0.825 0.898 0.950 0.898 0.885 0.825 0.898 0.950 0.898 0.885 ns lvcmos15_s_8 0.395 0.443 0.478 0.443 0.439 0.871 0.955 1.026 0.953 0.943 0.871 0.955 1.026 0.953 0.943 ns lvcmos18_f_12 0.352 0.388 0.414 0.388 0.377 0.412 0.418 0.440 0.418 0.410 0.412 0.418 0.440 0.418 0.410 ns lvcmos18_f_2 0.352 0.388 0.414 0.388 0.377 0.850 0.841 0.865 0.841 0.828 0.850 0.841 0.865 0.841 0.828 ns lvcmos18_f_4 0.352 0.388 0.414 0.388 0.377 0.643 0.637 0.660 0.637 0.624 0.643 0.637 0.660 0.637 0.624 ns lvcmos18_f_6 0.352 0.388 0.414 0.388 0.377 0.507 0.506 0.532 0.506 0.501 0.507 0.506 0.532 0.506 0.501 ns lvcmos18_f_8 0.352 0.388 0.414 0.388 0.377 0.468 0.468 0.491 0.468 0.459 0.468 0.468 0.491 0.468 0.459 ns lvcmos18_m_12 0.352 0.388 0.414 0.388 0.377 0.681 0.734 0.779 0.734 0.727 0.681 0.734 0.779 0.734 0.727 ns table 23: iob high performance (hp) switching characteristics (cont?d) i/o standards t inbuf_delay_pad_i t outbuf_delay_o_pad t outbuf_delay_td_pad units 0.90v 0.85v 0.72v 0.90v 0.85v 0.72v 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 -3 -2 -1 -2 -1 -3 -2 -1 -2 -1 s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 22 lvcmos18_m_2 0.352 0.388 0.414 0.388 0.377 0.902 0.899 0.927 0.899 0.884 0.902 0.899 0.927 0.899 0.884 ns lvcmos18_m_4 0.352 0.388 0.414 0.388 0.377 0.731 0.745 0.778 0.745 0.731 0.731 0.745 0.778 0.745 0.731 ns lvcmos18_m_6 0.352 0.388 0.414 0.388 0.377 0.638 0.659 0.696 0.664 0.653 0.638 0.659 0.696 0.664 0.653 ns lvcmos18_m_8 0.352 0.388 0.414 0.388 0.377 0.632 0.678 0.717 0.678 0.667 0.632 0.678 0.717 0.678 0.667 ns lvcmos18_s_12 0.352 0.388 0.414 0.388 0.377 1.015 1.130 1.224 1.130 1.119 1.015 1.130 1.224 1.130 1.119 ns lvcmos18_s_2 0.352 0.388 0.414 0.388 0.377 0.967 0.983 1.024 0.984 0.967 0.967 0.983 1.024 0.984 0.967 ns lvcmos18_s_4 0.352 0.388 0.414 0.388 0.377 0.864 0.910 0.964 0.910 0.897 0.864 0.910 0.964 0.910 0.897 ns lvcmos18_s_6 0.352 0.388 0.414 0.388 0.377 0.836 0.900 0.957 0.900 0.888 0.836 0.900 0.957 0.900 0.888 ns lvcmos18_s_8 0.352 0.388 0.414 0.388 0.377 0.881 0.959 1.033 0.959 0.948 0.881 0.959 1.033 0.959 0.948 ns lvdci_15_f 0.392 0.436 0.476 0.436 0.437 0.424 0.422 0.441 0.418 0.415 0.424 0.422 0.441 0.418 0.415 ns lvdci_15_m 0.392 0.436 0.476 0.436 0.437 0.591 0.632 0.666 0.632 0.628 0.591 0.632 0.666 0.632 0.628 ns lvdci_15_s 0.392 0.436 0.476 0.436 0.437 0.815 0.906 0.972 0.905 0.898 0.815 0.906 0.972 0.905 0.898 ns lvdci_18_f 0.346 0.376 0.407 0.376 0.374 0.418 0.425 0.443 0.425 0.418 0.418 0.425 0.443 0.425 0.418 ns lvdci_18_m 0.346 0.376 0.407 0.376 0.374 0.594 0.633 0.670 0.633 0.628 0.594 0.633 0.670 0.633 0.628 ns lvdci_18_s 0.346 0.376 0.407 0.376 0.374 0.821 0.908 0.978 0.908 0.902 0.821 0.908 0.978 0.908 0.902 ns lvds 0.315 0.352 0.406 0.352 0.348 0.392 0.404 0.425 0.404 0.396 0.392 0.404 0.425 0.404 0.396 ns mipi_dphy_dci_hs 0.305 0.317 0.342 0.317 0.319 0.429 0.434 0.452 0.434 0.427 n/a n/a n/a n/a n/a ns mipi_dphy_dci_lp 8.477 8.423 8.777 8.415 8.698 1.627 1.604 1.642 1.604 1.583 n/a n/a n/a n/a n/a ns pod10_dci_f 0.342 0.363 0.384 0.363 0.360 0.438 0.431 0.451 0.431 0.418 0.438 0.431 0.451 0.431 0.418 ns pod10_dci_m 0.342 0.363 0.384 0.363 0.360 0.592 0.627 0.660 0.627 0.622 0.592 0.627 0.660 0.627 0.622 ns pod10_dci_s 0.342 0.363 0.384 0.363 0.360 0.823 0.900 0.974 0.900 0.888 0.823 0.900 0.974 0.900 0.888 ns pod10_f 0.343 0.363 0.384 0.363 0.360 0.412 0.406 0.426 0.406 0.392 0.412 0.406 0.426 0.406 0.392 ns pod10_m 0.343 0.363 0.384 0.363 0.360 0.570 0.593 0.627 0.593 0.588 0.570 0.593 0.627 0.593 0.588 ns pod10_s 0.343 0.363 0.384 0.363 0.360 0.800 0.853 0.914 0.853 0.835 0.800 0.853 0.914 0.853 0.835 ns pod12_dci_f 0.343 0.364 0.386 0.364 0.360 0.428 0.421 0.440 0.421 0.412 0.428 0.421 0.440 0.421 0.412 ns pod12_dci_m 0.343 0.364 0.386 0.364 0.360 0.586 0.628 0.662 0.628 0.623 0.586 0.628 0.662 0.628 0.623 ns pod12_dci_s 0.343 0.364 0.386 0.364 0.360 0.813 0.899 0.959 0.899 0.892 0.813 0.899 0.959 0.899 0.892 ns pod12_f 0.343 0.364 0.386 0.364 0.360 0.402 0.396 0.414 0.395 0.383 0.402 0.396 0.414 0.395 0.383 ns pod12_m 0.343 0.364 0.386 0.364 0.360 0.562 0.595 0.629 0.595 0.589 0.562 0.595 0.629 0.595 0.589 ns pod12_s 0.343 0.364 0.386 0.364 0.360 0.789 0.844 0.899 0.844 0.835 0.789 0.844 0.899 0.844 0.835 ns slvs_400_18 0.315 0.352 0.406 0.352 0.348 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a ns sstl12_dci_f 0.331 0.366 0.384 0.366 0.350 0.428 0.421 0.440 0.421 0.412 0.428 0.421 0.440 0.421 0.412 ns sstl12_dci_m 0.331 0.366 0.384 0.366 0.350 0.584 0.630 0.664 0.628 0.624 0.584 0.630 0.664 0.628 0.624 ns sstl12_dci_s 0.331 0.366 0.384 0.366 0.350 0.813 0.899 0.959 0.899 0.892 0.813 0.899 0.959 0.899 0.892 ns sstl12_f 0.333 0.377 0.375 0.377 0.343 0.402 0.396 0.414 0.396 0.383 0.402 0.396 0.414 0.396 0.383 ns sstl12_m 0.333 0.377 0.375 0.377 0.343 0.561 0.597 0.631 0.597 0.591 0.561 0.597 0.631 0.597 0.591 ns sstl12_s 0.333 0.377 0.375 0.377 0.343 0.789 0.844 0.899 0.844 0.835 0.789 0.844 0.899 0.844 0.835 ns sstl135_dci_f 0.341 0.351 0.384 0.351 0.367 0.426 0.420 0.439 0.422 0.414 0.426 0.420 0.439 0.422 0.414 ns sstl135_dci_m 0.341 0.351 0.384 0.351 0.367 0.586 0.630 0.666 0.630 0.626 0.586 0.630 0.666 0.630 0.626 ns sstl135_dci_s 0.341 0.351 0.384 0.351 0.367 0.814 0.902 0.966 0.895 0.896 0.814 0.902 0.966 0.895 0.896 ns sstl135_f 0.331 0.352 0.373 0.352 0.356 0.397 0.392 0.412 0.394 0.385 0.397 0.392 0.412 0.394 0.385 ns table 23: iob high performance (hp) switching characteristics (cont?d) i/o standards t inbuf_delay_pad_i t outbuf_delay_o_pad t outbuf_delay_td_pad units 0.90v 0.85v 0.72v 0.90v 0.85v 0.72v 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 -3 -2 -1 -2 -1 -3 -2 -1 -2 -1 s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 23 table 24 specifies the values of t outbuf_delay_te_pad and t inbuf_delay_ibufdis_o . t outbuf_delay_te_pad is the delay from the t pin to the iob pad through the output buffer of an iob pad, when 3-state is enabled (i.e., a high impedance state). t inbuf_delay_ibufdis_o is the iob delay from ibufdisable to o output. in hp i/o banks, the internal dci termination tu rn-off time is always faster than t outbuf_delay_te_pad when the dcitermdisable pin is used. i/o standard adjustment measurement methodology input delay measurements table 25 shows the test setup parameters used for measuring input delay. sstl135_m 0.331 0.352 0.373 0.352 0.356 0.565 0.599 0.633 0.598 0.593 0.565 0.599 0.633 0.598 0.593 ns sstl135_s 0.331 0.352 0.373 0.352 0.356 0.789 0.850 0.907 0.849 0.841 0.789 0.850 0.907 0.849 0.841 ns sstl15_dci_f 0.332 0.349 0.362 0.349 0.346 0.424 0.421 0.439 0.423 0.422 0.424 0.421 0.439 0.423 0.422 ns sstl15_dci_m 0.332 0.349 0.362 0.349 0.346 0.591 0.632 0.667 0.632 0.627 0.591 0.632 0.667 0.632 0.627 ns sstl15_dci_s 0.332 0.349 0.362 0.349 0.346 0.816 0.906 0.971 0.906 0.898 0.816 0.906 0.971 0.906 0.898 ns sstl15_f 0.32 0.356 0.385 0.356 0.353 0.393 0.392 0.412 0.392 0.386 0.393 0.392 0.412 0.392 0.386 ns sstl15_m 0.32 0.356 0.385 0.356 0.353 0.564 0.598 0.633 0.598 0.592 0.564 0.598 0.633 0.598 0.592 ns sstl15_s 0.32 0.356 0.385 0.356 0.353 0.790 0.853 0.910 0.85 0.844 0.790 0.853 0.910 0.85 0.844 ns sstl18_i_dci_f 0.333 0.353 0.360 0.353 0.347 0.418 0.425 0.440 0.424 0.416 0.418 0.425 0.440 0.424 0.416 ns sstl18_i_dci_m 0.333 0.353 0.360 0.353 0.347 0.593 0.633 0.670 0.634 0.629 0.593 0.633 0.670 0.634 0.629 ns sstl18_i_dci_s 0.333 0.353 0.360 0.353 0.347 0.821 0.910 0.978 0.911 0.903 0.821 0.910 0.978 0.911 0.903 ns sstl18_i_f 0.323 0.355 0.378 0.355 0.364 0.388 0.395 0.415 0.392 0.387 0.388 0.395 0.415 0.392 0.387 ns sstl18_i_m 0.323 0.355 0.378 0.355 0.364 0.567 0.603 0.638 0.603 0.596 0.567 0.603 0.638 0.603 0.596 ns sstl18_i_s 0.323 0.355 0.378 0.355 0.364 0.794 0.861 0.920 0.860 0.851 0.794 0.861 0.920 0.860 0.851 ns sub_lvds 0.315 0.352 0.406 0.352 0.348 0.387 0.398 0.418 0.398 0.390 0.387 0.398 0.418 0.398 0.390 ns table 24: iob 3-state output switching characteristics symbol description speed grade and v ccint operating voltages units 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 t outbuf_delay_te_pad t input to pad high-impedance for the i/o banks ns t inbuf_delay_ibufdis_o ibuf turn-on time from ibufdisable to o output for the i/o banks ns table 23: iob high performance (hp) switching characteristics (cont?d) i/o standards t inbuf_delay_pad_i t outbuf_delay_o_pad t outbuf_delay_td_pad units 0.90v 0.85v 0.72v 0.90v 0.85v 0.72v 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 -3 -2 -1 -2 -1 -3 -2 -1 -2 -1 s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 24 table 25: input delay measurement methodology description i/o standard attribute v l (1)(2) v h (1)(2) v meas (1)(4)(6) v ref (1)(3)(5) lvcmos, 1.2v lvcmos12 0.1 1.1 0.6 ? lvcmos, lvdci, hslvdci, 1.5v lvcmos15, lvdci_15, hslvdci_15 0.1 1.4 0.75 ? lvcmos, lvdci, hslvdci, 1.8v lvcmos18, lvdci_18, hslvdci_18 0.1 1.7 0.9 ? hstl (high-speed transceiver logic), class i, 1.2v hstl_i_12 v ref ?0.5 v ref +0.5 v ref 0.6 hstl, class i, 1.5v hstl_i v ref ?0.65 v ref +0.65 v ref 0.75 hstl, class i, 1.8v hstl_i_18 v ref ?0.8 v ref +0.8 v ref 0.9 hsul (high-speed unterminated logic), 1.2v hsul_12 v ref ?0.5 v ref +0.5 v ref 0.6 sstl12 (stub series terminated logic), 1.2v sstl12 v ref ?0.5 v ref +0.5 v ref 0.6 sstl135, 1.35v sstl135 v ref ?0.575 v ref +0.575 v ref 0.675 sstl15, 1.5v sstl15 v ref ?0.65 v ref +0.65 v ref 0.75 sstl18, class i, 1.8v sstl18_i v ref ?0.8 v ref +0.8 v ref 0.9 pod10, 1.0v pod10 v ref ?0.6 v ref +0.6 v ref 0.7 pod12, 1.2v pod12 v ref ?0.74 v ref +0.74 v ref 0.84 diff_hstl, class i, 1.2v diff_hstl_i_12 0.6 ? 0.125 0.6 + 0.125 0 (6) ? diff_hstl, class i, 1.5v diff_hstl_i 0.75 ? 0.125 0.75 + 0.125 0 (6) ? diff_hstl, class i, 1.8v diff_hstl_i_18 0.9 ? 0.125 0.9 + 0.125 0 (6) ? diff_hsul, 1.2v diff_hsul_12 0.6 ? 0.125 0.6 + 0.125 0 (6) ? diff_sstl, 1.2v diff_sstl12 0.6 ? 0.125 0.6 + 0.125 0 (6) ? diff_sstl135, 1.35v diff_sstl135 0.675 ? 0.125 0.675 + 0.125 0 (6) ? diff_sstl15, 1.5v diff_sstl15 0.75 ? 0.125 0.75 + 0.125 0 (6) ? diff_sstl18_i, 1.8v diff_sstl18_i 0.9 ? 0.125 0.9 + 0.125 0 (6) ? diff_pod10, 1.0v diff_pod10 0.7 ? 0.125 0.7 + 0.125 0 (6) ? diff_pod12, 1.2v diff_pod12 0.84 ? 0.125 0.84 + 0.125 0 (6) ? lvds (low-voltage differential signaling), 1.8v lvds 0.9 ? 0.125 0.9 + 0.125 0 (6) ? sub_lvds, 1.8v sub_lvds 0.9 ? 0.125 0.9 + 0.125 0 (6) ? slvs, 1.8v slvs_400_18 0.9 ? 0.125 0.9 + 0.125 0 (6) ? mipi d-phy (high speed) 1.2v mipi_dphy_dci_hs 0.2 ? 0.125 0.2 + 0.125 0 (6) ? mipi d-phy (low power) 1.2v mipi_dphy_dci_lp 0.715 ? 0.2 0.715 + 0.2 0 (6) ? notes: 1. the input delay measurement methodology parameters for lvdci/hslvdci ar e the same for lvcmos standards of the same voltage. parameters for all other dci standards are the same for the corresponding non-dci standards. 2. input waveform switches between v l and v h . 3. measurements are made at typical, minimum, and maximum v ref values. reported delays reflect worst case of these measurements. v ref values listed are typical. 4. input voltage level from which measurement starts. 5. this is an input voltage referenc e that bears no relation to the v ref /v meas parameters found in ibis models and/or noted in figure 1 . 6. the value given is the differential input voltage. s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 25 output delay measurements output delays are measured with short output traces . standard termination was used for all testing. the propagation delay of the trace is characterized separa tely and subtracted from the final measurement, and is therefore not included in the generalized test setups shown in figure 1 and figure 2 . parameters v ref , r ref , c ref , and v meas fully describe the test conditions for each i/o standard. the most accurate prediction of propagat ion delay in any given application can be obtained through ibis simulation, using this method: 1. simulate the output driver of choice into the generalized test setup using values from table 26 . 2. record the time to v meas . 3. simulate the output driver of choice into the ac tual pcb trace and load using the appropriate ibis model or capacitance value to represent the load. 4. record the time to v meas . 5. compare the results of step 2 and step 4 . the increase or decrease in delay yields the actual propagation delay of the pcb trace. x-ref target - figure 1 figure 1: single-ended test setup x-ref target - figure 2 figure 2: differential test setup v ref r ref v meas (voltage level when taking delay measurement) c ref (probe capacitance) output DS923_01_ 041816 r ref v meas + ? c ref output DS923_02_ 041816 s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 26 table 26: output delay measurement methodology description i/o standard attribute r ref ( ) c ref (1) (pf) v meas (v) v ref (v) lvcmos, 1.2v lvcmos12 1m 0 0.6 0 lvcmos, 1.5v lvcmos15 1m 0 0.75 0 lvcmos, 1.8v lvcmos18 1m 0 0.9 0 lvdci, hslvdci, 1.5v lvdci_15, hslvdci_15 50 0 v ref 0.75 lvdci, hslvdci, 1.8v lvdci_15, hslvdci_18 50 0 v ref 0.9 hstl (high-speed transceiver logic), class i, 1.2v hstl_i_12 50 0 v ref 0.6 hstl, class i, 1.5v hstl_i 50 0 v ref 0.75 hstl, class i, 1.8v hstl_i_18 50 0 v ref 0.9 hsul (high-speed unterminated logic), 1.2v hsul_12 50 0 v ref 0.6 sstl12 (stub series terminated logic), 1.2v sstl12 50 0 v ref 0.6 sstl135, 1.35v sstl135 50 0 v ref 0.675 sstl15, 1.5v sstl15 50 0 v ref 0.75 sstl18, class i, 1.8v sstl18_i 50 0 v ref 0.9 pod10, 1.0v pod10 50 0 v ref 1.0 pod12, 1.2v pod12 50 0 v ref 1.2 diff_hstl, class i, 1.2v diff_hstl_i_12 50 0 v ref 0.6 diff_hstl, class i, 1.5v diff_hstl_i 50 0 v ref 0.75 diff_hstl, class i, 1.8v diff_hstl_i_18 50 0 v ref 0.9 diff_hsul, 1.2v diff_hsul_12 50 0 v ref 0.6 diff_sstl12, 1.2v diff_sstl12 50 0 v ref 0.6 diff_sstl135, 1.35v diff_sstl135 50 0 v ref 0.675 diff_sstl15, 1.5v diff_sstl15 50 0 v ref 0.75 diff_sstl18, 1.8v diff_sstl18_i 50 0 v ref 0.9 diff_pod10, 1.0v diff_pod10 50 0 v ref 1.0 diff_pod12, 1.2v diff_pod12 50 0 v ref 1.2 lvds (low-voltage differential signaling), 1.8v lvds 100 0 0 (2) 0 sub_lvds, 1.8v sub_lvds 100 0 0 (2) 0 mipi d-phy (high speed) 1.2v mipi_dphy_dci_hs 100 0 0 (2) 0 mipi d-phy (low power) 1.2v mipi_dphy_dci_lp 1m 0 0.6 0 notes: 1. c ref is the capacitance of the probe, nominally 0 pf. 2. the value given is the differential output voltage. s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 27 block ram and fifo switching characteristics ultraram switching characteristics table 27: block ram and fifo switching characteristics symbol description speed grade and v ccint operating voltages units 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 maximum frequency f max_wf_nc block ram (write_first and no_change modes). 825 737 645 585 516 mhz f max_rf block ram (read_first mode). 718 637 575 510 460 mhz f max_fifo fifo in all modes without ecc. 825 737 645 585 516 mhz f max_ecc block ram and fifo in ecc configuration without pipeline. 718 637 575 510 460 mhz block ram and fifo in ecc configuration with pipeline and block ram in write_first or no_change mode. 825 737 645 585 516 mhz t pw (1) minimum pulse width. 495 542 543 577 578 ps block ram and fifo clock-to-out delays t rcko_do clock clk to dout output (without output register). 0.92 1.03 1.11 1.46 1.54 ns, max t rcko_do_reg clock clk to dout output (with output register). 0.27 0.29 0.31 0.42 0.44 ns, max notes: 1. the mmcm and pll duty_cycle attribute should be set to 50% to meet the pulse-width requirements at the higher frequencies. table 28: ultraram switching characteristics symbol description speed grade and v ccint operating voltages units 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 maximum frequency f max ultraram maximum frequency with oreg_b. 650 600 600 500 500 mhz f max_ecc ultraram maximum frequency without oreg_b and en_ecc_rd_b = true. 450 400 400 325 325 mhz f max_norpipeline ultraram maximum frequency with oreg_b = false and en_ecc_rd_b = false. 550 500 500 425 425 mhz t pw (1) minimum pulse width. 650 700 700 800 800 ps t rstpw asynchronous reset minimum pulse width. 550 600 600 650 650 ps notes: 1. the mmcm and pll duty_cycle attribute should be set to 50% to meet the pulse-width requirements at the higher frequencies. s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 28 input/output delay switching characteristics dsp48 slice switching characteristics table 29: input/output delay switching characteristics symbol description speed grade and v ccint operating voltages units 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 f refclk refclk frequency (component mode). 200 to 800 mhz refclk frequency (native mode). 200 to 2400 200 to 2400 200 to 2133 mhz t minper_rst minimum reset pulse width. 52.00 ns t idelay_resolution / t odelay_resolution idelay/odelay chain resolution. 2.5 to 15 ps table 30: dsp48 slice switching characteristics symbol description speed grade and v ccint operating voltages units 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 maximum frequency f max with all registers used. 891 775 645 644 600 mhz f max_patdet with pattern detector. 794 687 571 562 524 mhz f max_mult_nomreg two register multiply without mreg. 635 544 456 440 413 mhz f max_mult_nomreg_patdet two register multiply without mreg with pattern detect. 577 492 410 395 371 mhz f max_preadd_noadreg without adreg. 655 565 468 453 423 mhz f max_nopipelinereg without pipeline registers (mreg, adreg). 483 410 338 323 304 mhz f max_nopipelinereg_patdet without pipeline registers (mreg, adreg) with pattern detect. 448 379 314 299 280 mhz s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 29 clock buffers and networks mmcm switching characteristics table 31: clock buffers switching characteristics symbol description speed grade and v ccint operating voltages units 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 global clock switching characte ristics (including bufgctrl) f max maximum frequency of a global clock tree (bufg). 891 775 667 725 667 mhz global clock buffer with input divide capability (bufgce_div) f max maximum frequency of a global clock buffer with input divide capability (bufgce_div). 891 775 667 725 667 mhz global clock buffer with clock enable (bufgce) f max maximum frequency of a global clock buffer with clock enable (bufgce). 891 775 667 725 667 mhz leaf clock buffer with clock enable (bufce_leaf) f max maximum frequency of a leaf clock buffer with clock enable (bufce_leaf). 891 775 667 725 667 mhz gty clock buffer with clock enable and clock input divide capability (bufg_gt) f max maximum frequency of a serial transceiver clock buffer with clock enable and clock input divide capability. 512 512 512 512 512 mhz table 32: mmcm specification symbol description speed grade and v ccint operating voltages units 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 mmcm_f inmax maximum input clock frequency. 1066 933 800 933 800 mhz mmcm_f inmin minimum input clock frequency. 10 10 10 10 10 mhz mmcm_f injitter maximum input clock period jitter. < 20% of clock input period or 1 ns max mmcm_f induty input duty cycle range: 10?49 mhz. 25?75 % input duty cycle range: 50?199 mhz. 30?70 % input duty cycle range: 200?399 mhz. 35?65 % input duty cycle range: 400?499 mhz. 40?60 % input duty cycle range: >500 mhz. 45?55 % mmcm_f min_psclk minimum dynamic phase shift clock frequency. 0.01 0.01 0.01 0.01 0.01 mhz mmcm_f max_psclk maximum dynamic phase shift clock frequency. 550 500 450 500 450 mhz mmcm_f vcomin minimum mmcm vco frequency. 800 800 800 800 800 mhz mmcm_f vcomax maximum mmcm vco frequency. 1600 1600 1600 1600 1600 mhz s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 30 mmcm_f bandwidth low mmcm bandwidth at typical. (1) 1.00 1.00 1.00 1.00 1.00 mhz high mmcm bandwidth at typical. (1) 4.00 4.00 4.00 4.00 4.00 mhz mmcm_t statphaoffset static phase offset of the mmcm outputs. (2) 0.12 0.12 0.12 0.12 0.12 ns mmcm_t outjitter mmcm output jitter. note 3 mmcm_t outduty mmcm output clock duty cycle precision. (4) 0.1650.200.200.200.20 ns mmcm_t lockmax mmcm maximum lock time for mmcm_f pfdmin . 100 100 100 100 100 s mmcm_f outmax mmcm maximum output frequency. 891 775 667 725 667 mhz mmcm_f outmin mmcm minimum output frequency. (4)(5) 6.25 6.25 6.25 6.25 6.25 mhz mmcm_t extfdvar external clock feedback variation. < 20% of clock input period or 1 ns max mmcm_rst minpulse minimum reset pulse width. 5.00 5.00 5.00 5.00 5.00 ns mmcm_f pfdmax maximum frequency at the phase frequency detector. 550 500 450 500 450 mhz mmcm_f pfdmin minimum frequency at the phase frequency detector. 10 10 10 10 10 mhz mmcm_t fbdelay maximum delay in the feedback path. 5 ns max or one clock cycle notes: 1. the mmcm does not filter typical spread-spectrum input cloc ks because they are usually far below the bandwidth filter frequencies. 2. the static offset is measured between any mmcm outputs with identical phase. 3. values for this parameter are av ailable in the clocking wizard. 4. includes global clock buffer. 5. calculated as f vco /128 assuming output duty cycle is 50%. table 32: mmcm specification (cont?d) symbol description speed grade and v ccint operating voltages units 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 31 pll switching characteristics table 33: pll specification (1) symbol description speed grade and v ccint operating voltages units 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 pll_f inmax maximum input clock frequency. 1066 933 800 933 800 mhz pll_f inmin minimum input clock frequency. 70 70 70 70 70 mhz pll_f injitter maximum input clock period jitter. < 20 % of clock input period or 1 ns max pll_f induty input duty cycle range: 70?399 mhz. 35?65 % input duty cycle range: 400?499 mhz. 40?60 % input duty cycle range: >500 mhz. 45?55 % pll_f vcomin minimum pll vco frequency. 750 750 750 750 750 mhz pll_f vcomax maximum pll vco frequency. 1500 1500 1500 1500 1500 mhz pll_t statphaoffset static phase offset of the pll outputs. (2) 0.12 0.12 0.12 0.12 0.12 ns pll_t outjitter pll output jitter. note 3 pll_t outduty pll clkout0, clkout0b, clkout1, clkout1b duty-cycle precision. (4) 0.165 0.20 0.20 0.20 0.20 ns pll_t lockmax pll maximum lock time. 100 s pll_f outmax pll maximum output frequency at clkout0, clkout0b, clkout1, clkout1b. 891 775 667 725 667 mhz pll maximum output frequency at clkoutphy. 2667 2667 2400 2400 2133 mhz pll_f outmin pll minimum output frequency at clkout0, clkout0b, clkout1, clkout1b. (5) 5.86 5.86 5.86 5.86 5.86 mhz pll minimum output frequency at clkoutphy. 2 x vco mode: 1500, 1 x vco mode: 750 0.5 x vco mode: 375 mhz pll_rst minpulse minimum reset pulse width. 5.00 5.00 5.00 5.00 5.00 ns pll_f pfdmax maximum frequency at the phase frequency detector. 667.5 667.5 667.5 667.5 667.5 mhz pll_f pfdmin minimum frequency at the phase frequency detector. 70 70 70 70 70 mhz pll_f bandwidth pll bandwidth at typical. 14 14 14 14 14 mhz notes: 1. the pll does not filter typical spread-spectrum input clocks because they are usually far belo w the loop filter frequencies. 2. the static offset is measured betwee n any pll outputs with identical phase. 3. values for this parameter are av ailable in the clocking wizard. 4. includes global clock buffer. 5. calculated as f vco /128 assuming output duty cycle is 50%. s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 32 device pin-to-pin output parameter guidelines the pin-to-pin numbers in table 34 through table 36 are based on the clock root placement in the center of the device. the actual pin-to-pin values will vary if the root placement selected is different. consult the vivado design suite timing report for the actual pin-to-pin values. table 34: global clock input to output dela y without mmcm (near clock region) symbol description device speed grade and v ccint operating voltages units 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 sstl15 global clock input to output delay using output flip-flop, fast slew rate, without mmcm. t ickof global clock input and output flip-flop without mmcm (near clock region). xcvu3p 4.72 5.28 5.65 5.93 6.40 ns xcvu5p 4.72 5.28 5.65 5.93 6.40 ns xcvu7p 4.72 5.28 5.65 5.93 6.40 ns xcvu9p 4.72 5.28 5.65 5.93 6.40 ns xcvu11p 4.78 5.31 5.66 5.95 6.48 ns xcvu13p 4.78 5.31 5.66 5.95 6.48 ns notes: 1. this table lists representative values wh ere one global clock input drives one vertic al clock line in each accessible column, and where all accessible i/o and clb flip-flops are clocked by the global clock net in a single slr. table 35: global clock input to output dela y without mmcm (far clock region) symbol description device speed grade and v ccint operating voltages units 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 sstl15 global clock input to output delay using output flip-flop, fast slew rate, without mmcm. t ickof_far global clock input and output flip-flop without mmcm (far clock region). xcvu3p 5.23 5.90 6.35 6.73 7.34 ns xcvu5p 5.23 5.90 6.35 6.73 7.34 ns xcvu7p 5.23 5.90 6.35 6.73 7.34 ns xcvu9p 5.23 5.90 6.35 6.73 7.34 ns xcvu11p 4.96 5.51 5.87 6.21 6.77 ns xcvu13p 4.96 5.51 5.87 6.21 6.77 ns notes: 1. this table lists representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible i/o and clb flip-flops are clocked by the global clock net in a single slr. s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 33 table 36: global clock input to output delay with mmcm symbol description device speed grade and v ccint operating voltages units 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 sstl15 global clock input to ou tput delay using output flip-flo p, fast slew rate, with mmcm. t ickofmmcmcc global clock input and output flip-flop with mmcm. xcvu3p 2.57 2.74 2.90 2.94 3.14 ns xcvu5p 2.57 2.74 2.90 2.94 3.14 ns xcvu7p 2.57 2.74 2.90 2.94 3.14 ns xcvu9p 2.57 2.74 2.90 2.94 3.14 ns xcvu11p 2.03 2.19 2.29 2.38 2.51 ns xcvu13p 2.03 2.19 2.29 2.38 2.51 ns notes: 1. this table lists representative values where one global clock input drives one vertical clock li ne in each accessible column, and where all accessible i/o and clb flip-flops are clocked by the global clock net in a single slr. 2. mmcm output jitter is already included in the timing calculation. s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 34 device pin-to-pin input parameter guidelines the pin-to-pin numbers in table 37 are based on the clock root placement in the center of the device. the actual pin-to-pin values will vary if the root placement selected is different. consult the vivado design suite timing report for the actual pin-to-pin values. table 37: global clock input setup and hold with mmcm symbol description device speed grade and v ccint operating voltages units 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 input setup and hold time relative to global clock input signal using sstl15 standard. (1)(2)(3) t psmmcmcc_vu3p global clock input and input flip-flop (or latch) with mmcm. setup xcvu3p 1.82 2.14 2.34 2.34 2.34 ns t phmmcmcc_vu3p hold 0.35 0.35 0.35 0.43 0.43 ns t psmmcmcc_vu5p setup xcvu5p 1.82 2.14 2.34 2.34 2.34 ns t phmmcmcc_vu5p hold 0.35 0.35 0.35 0.43 0.43 ns t psmmcmcc_vu7p setup xcvu7p 1.82 2.14 2.34 2.34 2.34 ns t phmmcmcc_vu7p hold 0.35 0.35 0.35 0.43 0.43 ns t psmmcmcc_vu9p setup xcvu9p 1.82 2.14 2.34 2.34 2.34 ns t phmmcmcc_vu9p hold 0.35 0.35 0.35 0.43 0.43 ns t psmmcmcc_vu11p setup xcvu11p 2.06 2.33 2.52 2.52 2.52 ns t phmmcmcc_vu11p hold 0.32 0.32 0.32 0.43 0.50 ns t psmmcmcc_vu13p setup xcvu13p 2.06 2.33 2.52 2.52 2.52 ns t phmmcmcc_vu13p hold 0.32 0.32 0.32 0.43 0.50 ns notes: 1. setup and hold times are measured over worst case conditions (process, voltage, temperature). setup time is measured relative to the global clock input signal using the slowest process, slowest temperature, and slowest voltage. hold time is measured relative to the glob al clock input signal using the fastest proces s, fastest temperature, and fastest voltage. 2. this table lists representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible i/o and clb flip-flops are clocked by the global clock net in a single slr. 3. use ibis to determine any duty-cycle di stortion incurred using various standards. table 38: sampling window description speed grade and v ccint operating voltages units 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 t samp_bufg (1) ps t samp_native_dpa ps t samp_native_bisc ps notes: 1. this parameter indicates the total sampling error of the vi rtex ultrascale+ fpga ddr input registers, measured across voltage, temperature, and process. the characterization meth odology uses the mmcm to capture the ddr input registers? edges of operation. these measurements include: clk0 mmcm jitter, mmcm accuracy (phase offset), and mmcm phase shift resolution. these measurements do not include package or clock tree skew. s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 35 package parameter guidelines the parameters in this section provide the necessary values for calculating timing budgets for clock transmitter and receiver data-valid windows. table 39: package skew symbol description device package value units pkgskew package skew xcvu3p ffvc1517 197 ps xcvu5p flva2104 ps flvb2104 ps flvc2104 ps xcvu7p flva2104 ps flvb2104 ps flvc2104 ps xcvu9p flga2104 ps flgb2104 ps flgc2104 ps flga2577 ps xcvu11p flgf1924 ps flgb2104 ps flgc2104 ps flga2577 ps xcvu13p fhga2104 ps fhgb2104 ps fhgc2104 ps flga2577 ps notes: 1. these values represent the worst-case skew between any two se lectio resources in the packag e: shortest delay to longest delay from die pad to ball. 2. package delay information is available for these device/package combinations. this information can be used to deskew the package. s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 36 gty transceiver specifications the ultrascale architecture and product overview ( ds890 ) lists the virtex ultrascale+ fpgas that include the gty transceivers. gty transceiver dc input and output levels table 40 summarizes the dc specifications of the gty tr ansceivers in virtex ultrascale+ fpgas. consult www.xilinx.com/products/tec hnology/high-speed-serial for further details. table 40: gty transceiver dc specifications symbol dc parameter conditions min typ max units dv ppin differential peak-to-peak input voltage (external ac coupled) >10.3125 gb/s ? mv 6.6 gb/s to 10.3125 gb/s ? mv 6.6 gb/s ? mv v in single-ended input voltage. voltage measured at the pin referenced to gnd. dc coupled v mgtavtt =1.2v ?v mgtavtt mv v cmin common mode input voltage dc coupled v mgtavtt =1.2v ?2/3v mgtavtt ?mv d vppout differential peak-to-peak output voltage (1) transmitter output swing is set to 1010 ??mv v cmoutdc common mode output voltage: dc coupled (equation based) when remote rx is terminated to gnd v mgtavtt /2 ? d vppout /4 mv when remote rx termination is floating v mgtavtt ? d vppout /2 mv when remote rx is terminated to v rx_term (2) mv v cmoutac common mode output voltage: ac coupled equation based v mgtavtt ? d vppout /2 mv r in differential input resistance ? 100 ? r out differential output resistance ? 100 ? t oskew transmitter output pair (txp and txn) intra-pair skew ? ? 10 ps c ext recommended external ac coupling capacitor (3) ? 100 ? nf notes: 1. the output swing and pre-emphasis le vels are programmable using the gty transceiver attributes discussed in the ultrascale archit ecture gty transceiver user guide ( ug578 ) and can result in values lowe r than reported in this table. 2. v rx_term is the remote rx termination voltage. 3. other values can be used as appropriate to conform to specific protocols and standards. v mgtavtt d vppout 4 ---------------------- ? v mgtavtt v rx_term ? 2 ------------------------------------------------------ - ?? ?? ? s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 37 table 41 summarizes the dc specifications of the clock in put of the gty transceivers in virtex ultrascale+ fpgas. consult www.xilinx.com/products/te chnology/high-speed-serial for further details. x-ref target - figure 3 figure 3: single-ended peak-to-peak voltage x-ref target - figure 4 figure 4: differential peak-to-peak voltage table 41: gty transceiver clock dc input level specification symbol dc parameter min typ max units v idiff differential peak-to-peak input voltage 250 ? 2000 mv r in differential input resistance ? 100 ? c ext required external ac coupling capacitor ? 10 ? nf table 42: gty transceiver clock output level specification symbol description conditions min typ max units v ol output high voltage for p and n r t = 100 across p and n signals ? ? mv v oh output low voltage for p and n r t = 100 across p and n signals ? ? mv v ddout d if fe rential outp ut voltage ( p ? n ) , p = h i g h (n?p), n = high r t = 100 across p and n signals ? ? mv v cmout common mode voltage r t = 100 across p and n signals ? ? mv 0 +v p n DS923_03_ 041816 single-ended peak-to-peak voltage 0 +v ?v p?n DS923_04_ 041816 differential peak-to-peak voltage differential peak-to-peak voltage = (single-ended peak-to-peak voltage) x 2 s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 38 gty transceiver switching characteristics consult www.xilinx.com/products/tec hnology/high-speed-serial for further information. table 43: gty transceiver performance symbol description output divider speed grade and v ccint operating voltages units 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 f gtymax gty maximum line rate 32.75 (1) 28.21 (1) 12.5 28.21 (1) 12.5 gb/s f gtymin gty minimum line rate 0.5 0.5 0.5 0.5 0.5 gb/s min max min max min max min max min max f gtycrange cpll line rate range (2) 1 4.0 12.5 4.0 12.5 4.0 8.5 4.0 12.5 4.0 8.5 gb/s 2 2.06.252.06.252.04.252.06.252.04.25gb/s 4 1.0 3.125 1.0 3.125 1.0 2.125 1.0 3.125 1.0 2.125 gb/s 8 0.5 1.5625 0.5 1.5625 0.5 1.0625 0.5 1.5625 0.5 1.0625 gb/s 16 n/a gb/s 32 n/a gb/s min max min max min max min max min max f gtyqrange1 qpll0 line rate range (3) 1 19.6 32.75 19.6 28.21 n/a 19.6 28.21 n/a gb/s 1 9.8 16.375 9.8 16.375 9.8 12.5 9.8 16.375 9.8 12.5 gb/s 2 4.9 8.1875 4.9 8.1875 4.9 8.1875 4.9 8.1875 4.9 8.1875 gb/s 4 2.45 4.09375 2.45 4.09375 2.45 4.09375 2.45 4.09375 2.45 4.09375 gb/s 8 1.225 2.04688 1.225 2.04688 1.225 2.04688 1.225 2.04688 1.225 2.04688 gb/s 16 0.6125 1.02344 0.6125 1.02344 0.6125 1.02344 0.6125 1.02344 0.6125 1.02344 gb/s min max min max min max min max min max f gtyqrange2 qpll1 line rate range (4) 1 16.0 26.0 16.0 26.0 n/a 16.0 26.0 n/a gb/s 1 8.0 13.0 8.0 13.0 8.0 12.5 8.0 13.0 8.0 12.5 gb/s 2 4.0 6.5 4.0 6.5 4.0 6.5 4.0 6.5 4.0 6.5 gb/s 4 2.03.252.03.252.03.252.03.252.03.25gb/s 8 1.0 1.625 1.0 1.625 1.0 1.625 1.0 1.625 1.0 1.625 gb/s 16 0.5 0.8125 0.5 0.8125 0.5 0.8125 0.5 0.8125 0.5 0.8125 gb/s min max min max min max min max min max f cpllrange cpll frequency range 2.0 6.25 2.0 6.25 2.0 4.25 2.0 6.25 2.0 4.25 ghz f qpll0range qpll0 frequency range 9.8 16.375 9.8 16.375 9.8 16.375 9.8 16.375 9.8 16.375 ghz f qpll1range qpll1 frequency range 8.013.08.013.08.013.08.013.08.013.0ghz notes: 1. xcvu11p devices in the flgf1924 package have a maximum gty transceiver line rate of 16.3 gb/s. 2. the values listed are the rounded results of the calculated equation (2 x cpll_frequency)/output_divider. 3. the values listed are the rounded results of the calc ulated equation (2 x qpll0_frequency)/output_divider. 4. the values listed are the rounded results of the calc ulated equation (2 x qpll1_frequency)/output_divider. s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 39 table 44: gty transceiver dynamic reconfiguration port (drp) switching characteristics symbol description all speed grades units f gtydrpclk gtydrpclk maximum frequency. mhz table 45: gty transceiver reference clock switching characteristics symbol description conditions all speed grades units min typ max f gclk reference clock frequency range. 60 ? 820 mhz t rclk reference clock rise time. 20% ? 80% ? 200 ? ps t fclk reference clock fall time. 80% ? 20% ? 200 ? ps t dcref reference clock duty cycle. transceiver pll only 40 50 60 % x-ref target - figure 5 figure 5: reference clock timing parameters table 46: gty transceiver reference clock os cillator selection phase noise mask (1) symbol description offset frequency min typ max units qpll refclkmask qpll0/qpll1 reference clock select phase noise mask at refclk frequency = 156.25 mhz. 10 khz ? ? ?112 dbc/hz 100 khz ? ? ?128 1 mhz ? ? ?145 qpll0/qpll1 reference clock select phase noise mask at refclk frequency = 312.5 mhz. 10 khz ? ? ?103 dbc/hz 100 khz ? ? ?123 1 mhz ? ? ?143 qpll0/qpll1 reference clock select phase noise mask at refclk frequency =625 mhz. 10 khz ? ? ?98 dbc/hz 100 khz ? ? ?117 1 mhz ? ? ?140 DS923_05_ 041816 80% 20% t fclk t rclk s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 40 cpll refclkmask cpll reference clock select phase noise mask at refclk frequency = 156.25 mhz. 10 khz ? ? ?112 dbc/hz 100 khz ? ? ?128 1 mhz ? ? ?145 50 mhz ? ? ?145 cpll reference clock select phase noise mask at refclk frequency = 312.5 mhz. 10 khz ? ? ?103 dbc/hz 100 khz ? ? ?123 1 mhz ? ? ?143 50 mhz ? ? ?145 cpll reference clock select phase noise mask at refclk frequency = 625 mhz. 10 khz ? ? ?98 dbc/hz 100 khz ? ? ?117 1 mhz ? ? ?140 50 mhz ? ? ?144 notes: 1. for reference clock frequencies not in this table, use th e phase-noise mask for the nearest reference clock frequency. table 47: gty transceiver pll/lock time adaptation symbol description conditions all speed grades units min typ max t lock initial pll lock. ? ? 1 ms t dlock clock recovery phase acquisition and adaptation time for decision feedback equalizer (dfe). after the pll is locked to the reference clock, this is the time it takes to lock the clock data recovery (cdr) to the data present at the input. ?ui clock recovery phase acquisition and adaptation time for low-power mode (lpm) when the dfe is disabled. ?ui table 46: gty transceiver reference clock os cillator selection phase noise mask (1) (cont?d) symbol description offset frequency min typ max units s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 41 table 48: gty transceiver user clock switching characteristics (1) symbol description data width conditions (bit) speed grade and v ccint operating voltages units 0.90v 0.85 0.72 internal logic interconnect logic -3 -2 -1 -2 -1 f txoutpma txoutclk maximum frequency sourced from outclkpma 511.719 511.719 390.625 511.719 322.266 mhz f rxoutpma rxoutclk maximum frequency sourced from outclkpma 511.719 511.719 390.625 511.719 322.266 mhz f txoutprogdiv txoutclk maximum frequency sourced from txprogdivclk 511.719 511.719 511.719 511.719 511.719 mhz f rxoutprogdiv rxoutclk maximum frequency sourced from rxprogdivclk 511.719 511.719 511.719 511.719 511.719 mhz f txin txusrclk maximum frequency 16 16, 32 511.719 511.719 390.625 390.625 322.266 mhz 32 32, 64 511.719 511.719 390.625 390.625 322.266 mhz 64 64, 128 511.719 440.781 195.313 402.813 195.313 mhz 20 20, 40 409.375 409.375 312.500 312.500 312.500 mhz 40 40, 80 409.375 409.375 312.500 350.000 257.813 mhz 80 80, 160 409.375 352.625 156.250 352.625 156.250 mhz f rxin rxusrclk maximum frequency 16 16, 32 511.719 511.719 390.625 390.625 322.266 mhz 32 32, 64 511.719 511.719 390.625 390.625 322.266 mhz 64 64, 128 511.719 440.781 195.313 402.813 195.313 mhz 20 20, 40 409.375 409.375 312.500 312.500 312.500 mhz 40 40, 80 409.375 409.375 312.500 350.000 257.813 mhz 80 80, 160 409.375 352.625 156.250 352.625 156.250 mhz f txin2 txusrclk2 maximum frequency 16 16, 32 511.719 511.719 390.625 390.625 322.266 mhz 32 32, 64 511.719 511.719 390.625 390.625 322.266 mhz 64 64, 128 511.719 440.781 195.313 402.813 195.313 mhz 20 20, 40 409.375 409.375 312.500 312.500 312.500 mhz 40 40, 80 409.375 409.375 312.500 350.000 257.813 mhz 80 80, 160 409.375 352.625 156.250 352.625 156.250 mhz f rxin2 rxusrclk2 maximum frequency 16 16, 32 511.719 511.719 390.625 390.625 322.266 mhz 32 32, 64 511.719 511.719 390.625 390.625 322.266 mhz 64 64, 128 511.719 440.781 195.313 402.813 195.313 mhz 20 20, 40 409.375 409.375 312.500 312.500 312.500 mhz 40 40, 80 409.375 409.375 312.500 350.000 257.813 mhz 80 80, 160 409.375 352.625 156.250 352.625 156.250 mhz notes: 1. clocking must be implem ented as described in the ultrascale architecture gt y transceiver user guide ( ug578 ). s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 42 table 49: gty transceiver transmitter switching characteristics symbol description condition min typ max units f gtytx serial data rate range 0.500 ? f gtymax gb/s t rtx tx rise time 20%?80% ? ? ps t ftx tx fall time 80%?20% ? ? ps t llskew tx lane-to-lane skew (1) ?? ps v txoobvdpp electrical idle amplitude ? ? mv t txoobtransition electrical idle transition time ? ? ns t j32.75 total jitter (2)(4) 32.75 gb/s ?? ui d j32.75 deterministic jitter (2)(4) ?? ui t j16.375 total jitter (2)(4) 16.375 gb/s ?? ui d j16.375 deterministic jitter (2)(4) ?? ui t j12.5 total jitter (2)(4) 12.5 gb/s ?? ui d j12.5 deterministic jitter (2)(4) ?? ui t j11.3 total jitter (2)(4) 11.3 gb/s ?? ui d j11.3 deterministic jitter (2)(4) ?? ui t j10.3125_qpll total jitter (2)(4) 10.3125 gb/s ?? ui d j10.3125_qpll deterministic jitter (2)(4) ?? ui t j10.3125_cpll total jitter (3)(4) 10.3125 gb/s ?? ui d j10.3125_cpll deterministic jitter (3)(4) ?? ui t j9.953 total jitter (2)(4) 9.953 gb/s ?? ui d j9.953 deterministic jitter (2)(4) ?? ui t j9.8 total jitter (2)(4) 9.8 gb/s ?? ui d j9.8 deterministic jitter (2)(4) ?? ui t j8.0_qpll total jitter (2)(4) 8.0 gb/s ?? ui d j8.0_qpll deterministic jitter (2)(4) ?? ui t j8.0_cpll total jitter (3)(4) 8.0 gb/s ?? ui d j8.0_cpll deterministic jitter (3)(4) ?? ui t j6.6_cpll total jitter (3)(4) 6.6 gb/s ?? ui d j6.6_cpll deterministic jitter (3)(4) ?? ui t j5.0 total jitter (3)(4) 5.0 gb/s ?? ui d j5.0 deterministic jitter (3)(4) ?? ui t j4.25 total jitter (3)(4) 4.25 gb/s ?? ui d j4.25 deterministic jitter (3)(4) ?? ui t j3.75 total jitter (3)(4) 3.75 gb/s ?? ui d j3.75 deterministic jitter (3)(4) ?? ui t j3.20 total jitter (3)(4) 3.20 gb/s (5) ?? ui d j3.20 deterministic jitter (3)(4) ?? ui t j3.20l total jitter (3)(4) 3.20 gb/s (6) ?? ui d j3.20l deterministic jitter (3)(4) ?? ui t j2.5 total jitter (3)(4) 2.5 gb/s (7) ?? ui d j2.5 deterministic jitter (3)(4) ?? ui s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 43 t j1.25 total jitter (3)(4) 1.25 gb/s (8) ?? ui d j1.25 deterministic jitter (3)(4) ?? ui t j500 total jitter (3)(4) 500 mb/s ?? ui d j500 deterministic jitter (3)(4) ?? ui notes: 1. using same refclk input with tx phas e alignment enabled for up to four consec utive transmitters (one fully populated gty quad) at maximum line rate. 2. using qpll_fbdiv = 40, 20-bit internal data width. these va lues are not intended for pr otocol specific compliance determinations. 3. using cpll_fbdiv = 2, 20-bit internal da ta width. these values are not intend ed for protocol specific compliance determinations. 4. all jitter values are based on a bit-error ratio of 10 -12 . 5. cpll frequency at 3.2 ghz and txout_div = 2. 6. cpll frequency at 1.6 ghz and txout_div = 1. 7. cpll frequency at 2.5 ghz and txout_div = 2. 8. cpll frequency at 2.5 ghz and txout_div = 4. table 49: gty transceiver transmitter switching characteristics (cont?d) symbol description condition min typ max units s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 44 table 50: gty transceiver receiver switching characteristics symbol description condition min typ max units f gtyrx serial data rate 0.500 ? f gtymax gb/s t rxelecidle time for rxelecidle to respond to loss or restoration of data ??ns r xoobvdpp oob detect threshold peak-to-peak ? mv r xsst receiver spread-spectrum tracking (1) modulated at 33 khz ? ppm r xrl run length (cid) ? ? ui r xppmtol data/refclk ppm offset tolerance bit rates 6.6 gb/s ? ppm bit rates > 6.6 gb/s and 8.0 gb/s ?ppm bit rates > 8.0 gb/s ? ppm sj jitter tolerance (2) j t_sj32.75 sinusoidal jitter (qpll) (3) 32.75 gb/s ? ? ui j t_sj16.375 sinusoidal jitter (qpll) (3) 16.375 gb/s ? ? ui j t_sj12.5 sinusoidal jitter (qpll) (3) 12.5 gb/s ? ? ui j t_sj11.3 sinusoidal jitter (qpll) (3) 11.3 gb/s ? ? ui j t_sj10.32_qpll sinusoidal jitter (qpll) (3) 10.32 gb/s ? ? ui j t_sj10.32_cpll sinusoidal jitter (cpll) (3) 10.32 gb/s ? ? ui j t_sj9.8 sinusoidal jitter (qpll) (3) 9.8 gb/s ? ? ui j t_sj8.0_qpll sinusoidal jitter (qpll) (3) 8.0 gb/s ? ? ui j t_sj8.0_cpll sinusoidal jitter (cpll) (3) 8.0 gb/s ? ? ui j t_sj6.6_cpll sinusoidal jitter (cpll) (3) 6.6 gb/s ? ? ui j t_sj5.0 sinusoidal jitter (cpll) (3) 5.0 gb/s ? ? ui j t_sj4.25 sinusoidal jitter (cpll) (3) 4.25 gb/s ? ? ui j t_sj3.75 sinusoidal jitter (cpll) (3) 3.75 gb/s ? ? ui j t_sj3.2 sinusoidal jitter (cpll) (3) 3.2 gb/s (4) ??ui j t_sj3.2l sinusoidal jitter (cpll) (3) 3.2 gb/s (5) ??ui j t_sj2.5 sinusoidal jitter (cpll) (3) 2.5 gb/s (6) ??ui j t_sj1.25 sinusoidal jitter (cpll) (3) 1.25 gb/s (7) ??ui j t_sj500 sinusoidal jitter (cpll) (3) 500 mb/s ? ? ui sj jitter tolerance with stressed eye (2) j t_tjse3.2 total jitter with stressed eye (8) 3.2 gb/s ? ? ui j t_tjse6.6 6.6 gb/s ? ? ui j t_sjse3.2 sinusoidal jitter with stressed eye (8) 3.2 gb/s ? ? ui j t_sjse6.6 6.6 gb/s ? ? ui notes: 1. using rxout_div = 1, 2, and 4. 2. all jitter values are based on a bit error ratio of 10 ?12 . 3. the frequency of the injected sinusoidal jitter is 80 mhz. 4. cpll frequency at 3.2 ghz and rxout_div = 2. 5. cpll frequency at 1.6 ghz and rxout_div = 1. 6. cpll frequency at 2.5 ghz and rxout_div = 2. 7. cpll frequency at 2.5 ghz and rxout_div = 4. 8. composite jitter with rx equalizer enabled. dfe disabled. s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 45 gty transceiver electrical compliance the ultrascale archit ecture gty transceiver user guide ( ug578 ) contains recommended use modes that ensure compliance for the protocols listed in table 51 . the transceiver wizard provides the recommended settings for those use cases and for protocol specific characteristics. table 51: gty transceiver protocol list protocol specification serial rate (gb/s) electrical compliance caui-4 ieee 802.3-2012 25.78125 compliant 28 gb/s backplane cei-25g-lr 25?28.05 compliant interlaken oif-cei-6g, oif-cei-11gsr, oif-cei-28g-mr 4.25?25.78125 compliant 100gbase-kr4 ieee 802.3bj-2014, cei-25g-lr 25.78125 compliant (1) otu4 (otl4.4) oif-cei-28g-vsr 27.952493 compliant caui-10 ieee 802.3-2012 10.3125 compliant nppi ieee 802.3-2012 10.3125 compliant 10gbase-kr ieee 802.3-2012 10.3125 compliant sfp+ sff-8431 (sr and lr) 9.95328?11.10 compliant xfp inf-8077i, revision 4.5 10.3125 compliant rxaui cei-6g-sr 6.25 compliant xaui ieee 802.3-2012 3.125 compliant 1000base-x ieee 802.3-2012 1.25 compliant otu2 itu g.8251 10.709225 compliant otu4 (otl4.10) oif-cei-11g-sr 11.180997 compliant oc-3/12/48/192 gr-253-core 0.1555?9.956 compliant pcie gen1, 2, 3 pci express base 3.0 2.5, 5.0, and 8.0 compliant sdi smpte 424m-2006 0.27?2.97 compliant hybrid memory cube (hmc) hmc-15g -sr 10, 12.5, and 15.0 compliant cpri cpri_v_6_1_2014-07-01 0.6144?12.165 compliant passive optical network (pon) 10g-epon, 1g-epon, ng-pon2, xg-pon, and 2.5g-pon 0.155?10.3125 compliant jesd204a/b oif-cei-6g, oif-cei-11g 3.125?12.5 compliant serial rapidio rapidio specification 3.1 1.25?10.3125 compliant displayport (source only) dp 1.2b cts 1.62?5.4 compliant fibre channel fc-pi-4 1.0625?14.025 compliant sata gen1, 2, 3 serial ata revision 3.0 specification 1.5, 3.0, and 6.0 compliant sas gen1, 2, 3 t10/bsr incits 519 3.0, 6.0, and 12.0 compliant sfi-5 oif-sfi5-01.0 0.625 - 12.5 compliant notes: 1. 25 db loss at nyquist without fec. s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 46 gty transceiver protocol jitter characteristics for table 52 through table 57 , the ultrascale architecture gty transceiver user guide ( ug578 ) contains recommended settings for optimal usage of protocol specific characteristics. table 52: gigabit ethernet protocol characteristics (gty transceivers) description line rate (mb/s) min max units gigabit ethernet transmitter jitter generation total transmitter jitter (t_tj) 1250 ? ui gigabit ethernet receiver high frequency jitter tolerance total receiver jitter tolerance 1250 ? ui table 53: xaui protocol characteristics (gty transceivers) description line rate (mb/s) min max units xaui transmitter jitter generation total transmitter jitter (t_tj) 3125 ? ui xaui receiver high frequency jitter tolerance total receiver jitter tolerance 3125 ? ui table 54: pci express protocol characteristics (gty transceivers) (1) standard description condition line rate (mb/s) min max units pci express transmitter jitter generation pci express gen 1 total transmitter jitter 2500 ? ui pci express gen 2 total transmitter jitter 5000 ? ui pci express gen 3 (2) total transmitter jitter uncorrelated 8000 ?ps deterministic transmitter jitter uncorrelated ? ps pci express receiver high frequency jitter tolerance pci express gen 1 total receiver jitter tolerance 2500 ? ui pci express gen 2 (2) receiver inherent timing error 5000 ?ui receiver inherent deterministic timing error ? ui pci express gen 3 (2) receiver sinusoidal jitter tolerance 0.03 mhz?1.0 mhz 8000 ?ui 1.0mhz?10mhz note 3 ?ui 10 mhz?100 mhz ? ui notes: 1. tested per card electrom echanical (cem) methodology. 2. using a common refclk. 3. between 1 mhz and 10 mhz the minimum sinusoidal jitter roll-off with a slope of 20 db/decade. s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 47 table 55: cei-6g and cei-11g protocol char acteristics (gty transceivers) description line rate (mb/s) interface min max units cei-6g transmitter jitter generation total transmitter jitter (1) 4976?6375 cei-6g-sr ? ui cei-6g-lr ? ui cei-6g receiver high frequency jitter tolerance total receiver jitter tolerance (1) 4976?6375 cei-6g-sr ? ui cei-6g-lr ? ui cei-11g transmitter jitter generation total transmitter jitter (2) 9950?11100 cei-11g-sr ? ui cei-11g-lr/mr ? ui cei-11g receiver high frequency jitter tolerance total receiver jitter tolerance (2) 9950?11100 cei-11g-sr ? ui cei-11g-mr ? ui cei-11g-lr ? ui notes: 1. tested at most commonly used line rate of 6250 mb/s using 390.625 mhz reference clock. 2. tested at line rate of 9950 mb/s using 155.46875 mhz reference clock and 11100 mb/s using 173.4375 mhz reference clock. table 56: sfp+ protocol characteristics (gty transceivers) description line rate (mb/s) min max units sfp+ transmitter jitter generation total transmitter jitter 9830.40 (1) ?ui 9953.00 10312.50 10518.75 11100.00 sfp+ receiver frequency jitter tolerance total receiver jitter tolerance 9830.40 (1) ?ui 9953.00 10312.50 10518.75 11100.00 notes: 1. line rated used for cpri over sfp+ applications. s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 48 table 57: cpri protocol characteristics (gty transceivers) description line rate (mb/s) min max units cpri transmitter jitter generation total transmitter jitter ?ui ?ui ?ui ?ui ?ui ?ui ? note 1 ui cpri receiver frequency jitter tolerance total receiver jitter tolerance ?ui ?ui ?ui ?ui ?ui ?ui note 1 ?ui notes: 1. tested per sfp+ specification, see table 57 . s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 49 integrated interface block for interlaken more information and documentation on solutions usin g the integrated interface block for interlaken can be found at ultrascale interlaken . the ultrascale architecture and product overview ( ds890 ) lists how many blocks are in each virtex ultrascale+ fpga. table 58: maximum performance for interlaken designs symbol description speed grade and v ccint operating voltages units 0.90v 0.85v 0.72v -3 -2 -1 -2 (1) -1 f rx_serdes_clk receive serializer/ deserializer clock 440.79 440.79 195.32 402.84 195.32 mhz f tx_serdes_clk transmit serializer/ deserializer clock 440.79 440.79 195.32 402.84 195.32 mhz f drp_clk dynamic reconfiguration port clock 250.00 250.00 250.00 250.00 250.00 mhz min max min max min max min max min max f core_clk interlaken core clock 300.00 (2) 300.00 (2) 300.00 322.27 300.00 (2) 429.69 300.00 322.27 mhz 460.00 (3) 460.00 (3) 412.50 (3) f lbus_clk interlaken local bus clock 300.00 349.52 300.00 349.52 300.00 322.27 300.00 349.52 300.00 322.27 mhz notes: 1. xcvu11p devices in the flvf1924 packag e are only supported using the 12 x 12. 5g interlaken co nfiguration. see table 43 for the f gtymax description. 2. the minimum value for core_clk is 300 mhz for the 12 x 12.5g interlaken configuration. 3. the minimum value for core_clk is 412.5 mhz for the 6 x 25.78125g interlaken configuration. s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 50 integrated interface block for 100g ethernet mac and pcs more information and documentation on solutions us ing the integrated 100 gb/s ethernet block can be found at ultrascale integrated 100g ethernet mac/pcs . the ultrascale architecture and product overview ( ds890 ) lists how many blocks are in each virtex ultrascale+ fpga. integrated interface block for pci express designs more information and documentation on soluti ons for pci express designs can be found at pci express . the ultrascale architecture and product overview ( ds890 ) lists how many blocks are in each virtex ultrascale+ fpga. table 59: maximum performance for 100g ethernet designs symbol description speed grade and v ccint operating voltages units 0.90v 0.85v 0.72v -3 -2 (1) -1 -2 -1 f tx_clk transmit clock 390.625 390.625 322.223 322.223 322.223 mhz f rx_clk receive clock 390.625 390.625 322.223 322.223 322.223 mhz f rx_serdes_clk receive serializer/deserializer clock 390.625 390.625 322.223 322.223 322.223 mhz f drp_clk dynamic reconfiguration port clock 250.00 250.00 250.00 250.00 250.00 mhz notes: 1. the maximum clock frequency of 390.625 mhz only applies to the caui-10 interface. the maximum clock frequency for the caui-4 interface is 322.223 mhz. table 60: maximum performance for pci express designs (1)(2) symbol description speed grade and v ccint operating voltages units 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 f pipeclk pipe clock maximum frequency. 250.00 250.00 250.00 250.00 250.00 mhz f coreclk core clock maximum frequency. 500.00 500.00 500.00 250.00 250.00 mhz f drpclk drp clock maximum frequency. 250.00 250.00 250.00 250.00 250.00 mhz f mcapclk mcap clock maximum frequency. 125.00 125.00 125.00 125.00 125.00 mhz notes: 1. pci express gen4 operation is supported for x1, x2, x4, and x8 widths. 2. pci express gen4 operation is suppo rted in -2i and -3e speed grades. s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 51 system monitor specifications table 61: sysmon specifications parameter symbol comments/conditions min typ max units v ccadc = 1.8v 3%, v refp = 1.25v, v refn = 0v, adcclk = 5.2 mhz, t j = ?40c to 100c, typical values at t j = 40c adc accuracy (1) resolution 10 ? ? bits integral nonlinearity (2) inl ? ? 1.5 lsbs differential nonlinearity dnl no missing codes, guaranteed monotonic ??1lsbs offset error offset calibration enabled ? ? 2 lsbs gain error ??0.4% sample rate ??0.2ms/s rms code noise external 1.25v reference ? ? 1 lsbs on-chip reference ? 1 ? lsbs adc accuracy at extended temperatures resolution t j = ?55c to 125c 10 ? ? bits integral nonlinearity inl t j = ?55c to 125c ? ? 1 lsbs differential nonlinearity dnl no missing codes, guaranteed monotonic t j = ?55c to 125c ??1 analog inputs (2) adc input ranges unipolar operation 0 ? 1 v bipolar operation ?0.5 ? +0.5 v unipolar common mode range (fs input) 0 ? +0.5 v bipolar common mode range (fs input) +0.5 ? +0.6 v maximum external channel input ranges adjacent channels set within these ranges should not corrupt measurements on adjacent channels ?0.1 ? v ccadc v on-chip sensor accuracy temperature sensor error (1) t j = ?40c to 100c (with external ref) ? ? 4 c t j = ?55c to 125c (with external ref) ? ? 4.5 c t j = ?40c to 100c (with internal ref) ? ? 5 c t j = ?55c to 125c (with internal ref) ? ? 6.5 c s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 52 supply sensor error (3) supply voltages 0.72v to 1.2v, t j =? 40c to 100c (with external ref) ??0.5% supply voltages 0.72v to 1.2v, t j = ?55c to 125c (with external ref) ??1.0% all other supply voltages, t j = ?40c to 100c (with external ref) ??1.0% all other supply voltages, t j = ?55c to 125c (with external ref) ??2.0% supply voltages 0.72v to 1.2v, t j =? 40c to 100c (with internal ref) ??1.0% supply voltages 0.72v to 1.2v, t j = ?55c to 125c (with internal ref) ??2.0% all other supply voltages, t j = ?40c to 100c (with internal ref) ??1.5% all other supply voltages, t j = ?55c to 125c (with internal ref) ??2.5% conversion rate (4) conversion time?continuous t conv number of adcclk cycles 26 ? 32 cycles conversion time?event t conv number of adcclk cycles ? ? 21 cycles drp clock frequency dclk drp clock frequency 8 ? 250 mhz adc clock frequency adcclk derived from dclk 1 ? 5.2 mhz dclk duty cycle 40 ? 60 % sysmon reference (5) external reference v refp externally supplied reference voltage 1.20 1.25 1.30 v on-chip reference ground v refp pin to agnd, t j = ?40c to 100c 1.2375 1.25 1.2625 v ground v refp pin to agnd, t j = ?55c to 125c 1.225 1.25 1.275 v notes: 1. adc offset errors are removed by enabling the adc automatic offset calibration feature. the values are specified for when this feature is enabled. 2. see the analog input section in the ultrascale architecture system monitor user guide ( ug580 ). 3. supply sensor offset and gain errors ar e removed by enabling the automatic offset and gain calibration feature. the values are specified for when th is feature is enabled. 4. see the adjusting the acquisition settling time section in the ultrascale architecture sy stem monitor user guide ( ug580 ). 5. any variation in the reference voltage from the nominal v refp = 1.25v and v refn = 0v will result in a deviation from the ideal transfer function. this also impacts the accuracy of th e internal sensor measurements (i.e., temperature and power supply). however, for external ratiometric type applicat ions allowing reference to vary by 4% is permitted. table 61: sysmon specifications (cont?d) parameter symbol comments/conditions min typ max units s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 53 sysmon i2c/pmbus interfaces table 62: sysmon i2c fast mode interf ace switching characteristics symbol description min max units t smfckl scl low time 1.3 ? s t smfckh scl high time 0.6 ? s t smfcko sdao clock-to-out delay ? 900 ns t smfdck sdai setup time 100 ? ns f smfclk scl clock frequency ? 400 khz x-ref target - figure 6 figure 6: sysmon i2c fast mode interface timing table 63: sysmon i2c standard mode inte rface switching characteristics symbol description min max units t smsckl scl low time 4.7 ? s t smsckh scl high time 4.0 ? s t smscko sdao clock-to-out delay ? 3450 ns t smsdck sdai setup time 250 ? ns f smsclk scl clock frequency ? 100 khz x-ref target - figure 7 figure 7: sysmon i2c standard mode interface timing t smfcko t smfdck DS923 _06_041816 scl sdai sdao t smscko t smsdck ds925 _07_041816 scl sdai sdao s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 54 configuration switching characteristics table 64: configuration switching characteristics symbol description speed grade and v ccint operating voltages units 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 power-up timing characteristics t pl program latency. 7.5 7.5 7.5 7.5 7.5 ms, max t por power-on reset (40 ms ramp rate time). 57 57 57 57 57 ms, max 00000ms, min power-on reset with por override (2 ms ramp rate time). 15 15 15 15 15 ms, max 55555ms, min t program program pulse width. 250 250 250 250 250 ns, min cclk output (master mode) t icck master cclk output delay from init_b. 150 150 150 150 150 ns, min t mcckl (1) master cclk clock low time duty cycle. 40/60 40/60 40/60 40/60 40/60 %, min/max t mcckh master cclk clock high time duty cycle. 40/60 40/60 40/60 40/60 40/60 %, min/max f mcck master cclk frequency for spi x1/x2/x4/x8 and bpi x8/x16 150 150 150 150 150 mhz, max f mcck_start master cclk frequency at start of configuration. 3.00 3.00 3.00 3.00 3.00 mhz, typ f mccktol frequency tolerance, master mode with respect to nominal cclk. 15 15 15 15 15 %, max emcclk input (master mode) t emcckl external master cclk low time. 2.5 2.5 2.5 2.5 2.5 ns, min t emcckh external master cclk high time. 2.5 2.5 2.5 2.5 2.5 ns, min f emcck external master cclk frequency for spi x1/x2/x4/x8 and bpi x8/x16. 150 150 150 150 150 mhz, max internal configuration access port f icapck internal configuration access port (icape3). 200 200 200 175 175 mhz, max slave serial mode programming switching t dcck /t cckd d in setup/hold. 3.0/0 3.0/0 3.0/0 3.5/0 3.5/0 ns, min t cco d out clock to out. 88888ns, max selectmap mode programming switching t smdcck /t smcckd d[31:00] setup/hold. 3.5/0 3.5/0 3.5/0 4.0/0 4.0/0 ns, min t smcscck /t smcckcs csi_b setup/hold. 4.0/0 4.0/0 4.0/0 4.5/0 4.5/0 ns, min t smwcck /t smcckw rdwr_b setup/hold. 10.0/0 10.0/0 10.0/0 10.0/0 10.0/0 ns, min t smckcso cso_b clock to out (330 pull-up resistor required). 77777ns, max t smco d[31:00] clock to out in readback. 88888ns, max f rbcck readback frequency. 125 125 125 125 125 mhz, max s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 55 boundary-scan port timing specifications t taptck /t tcktap tms and tdi setup/hold. 3.0/ 2.0 3.0/ 2.0 3.0/ 2.0 3.0/ 2.0 3.0/ 2.0 ns, min t tcktdo tck falling edge to tdo output. 77777ns, max f tck tck frequency for a xcvu3p device. 6666666666mhz, max bpi master flash mode programming switching t bpicco a[28:00], rs[1:0], fcs_b, foe_b, fwe_b, adv_b clock to out. 10 10 10 10 10 ns, max t bpidcc /t bpiccd d[15:00] setup/hold. 3.5/0 3.5/0 3.5/0 4.0/0 4.0/0 ns, min spi master flash mode programming switching t spidcc /t spiccd d[03:00] setup/hold. 3.0/0 3.0/0 3.0/0 3.5/0 3.5/0 ns, min t spidcc /t spiccd d[07:04] setup/hold. 3.5/0 3.5/0 3.5/0 4.0/0 4.0/0 ns, min t spiccm mosi clock to out. 8.0 8.0 8.0 8.0 8.0 ns, max t spiccfc fcs_b clock to out. 8.0 8.0 8.0 8.0 8.0 ns, max dna port switching f dnack dna port frequency. 200 200 200 175 175 mhz, max startupe3 ports t usrcclko startupe3 usrcclko input port to cclk pin output delay. 1.00/ 6.00 1.00/ 6.70 1.00/ 7.50 1.00/ 7.50 1.00/ 7.50 ns, min/max t do do[3:0] ports to d03-d00 pins output delay. 1.00/ 6.70 1.00/ 7.70 1.00/ 8.40 1.00/ 8.40 1.00/ 8.40 ns, min/max t dts dts[3:0] ports to d03-d00 pins 3-state delays. 1.00/ 7.30 1.00/ 8.30 1.00/ 9.00 1.00/ 9.00 1.00/ 9.00 ns, min/max t fcsbo fcsbo port to fcs_b pin output delay. 1.00/ 6.90 1.00/ 8.00 1.00/ 8.60 1.00/ 8.60 1.00/ 8.60 ns, min/max t fcsbts fcsbts port to fcs_b pin 3-state delay. 1.00/ 6.90 1.00/ 8.00 1.00/ 8.60 1.00/ 8.60 1.00/ 8.60 ns, min/max t usrdoneo usrdoneo port to done pin output delay. 1.00/ 8.50 1.00/ 9.60 1.00/ 10.40 1.00/ 10.40 1.00/ 10.40 ns, min/max t usrdonets usrdonets port to done pin 3-state delay. 1.00/ 8.50 1.00/ 9.60 1.00/ 10.40 1.00/ 10.40 1.00/ 10.40 ns, min/max t di d03-d00 pins to di[3:0] ports input delay. 0.5/ 2.6 0.5/ 3.1 0.5/ 3.5 0.5/ 3.5 0.5/ 3.5 ns, min/max f cfgmclk startupe3 cfgmclk output frequency. 50 50 50 50 50 mhz, typ f cfgmclktol startupe3 cfgmclk output frequency tolerance. 15 15 15 15 15 %, max t dci_match specifies a stall in the startup cycle until the digitally controlled impedance (dci) match signals are asserted. 44444ms, max notes: 1. when the cclk is sourced from the emcclk pin with a di vide-by-one setting, the extern al emcclk must meet this duty-cycle requirement. table 64: configuration switching characteristics (cont?d) symbol description speed grade and v ccint operating voltages units 0.90v 0.85v 0.72v -3 -2 -1 -2 -1 s e n d f e e d b a c k
virtex ultrascale+ fpga data sheet: dc and ac switching characteristics DS923 (v1.0) april 20, 2016 www.xilinx.com advance product specification 56 efuse programming conditions revision history the following table shows the revision history for this document. notice of disclaimer the information disclosed to you hereunder (the ?materials?) is provided solely for the selectio n and use of xilinx products. t o the maximum extent permitted by applicable law: (1) materials are ma de available "as is" and with al l faults, xilinx hereby disclai ms all warranties and conditions, express, implied, or statutory, including but no t limited to warranties of merchantability, non-infringement, or fitness for any partic ular purpose; and (2) xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) fo r any loss or damage of any kind or nature related to, arising under, or in connection with, th e materials (including your use of the ma terials), including for any direct, indire ct, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or xilinx h ad been advised of the possibility of the same . xilinx assumes no obligation to correct an y errors contained in the materials or t o notify you of updates to the mate rials or to product specifications. you may not reproduce, modify, distribute, or publicly dis play the materials without prior written consent. certain products are subject to the terms and conditio ns of xilinx?s limited warra nty, please refer to xilinx?s terms of sale which can be viewed at www.xilinx.com/legal.htm#tos ; ip cores may be subject to warranty and support terms contained in a license issued to you by xilinx. xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-saf e performance; you assume sole risk and lia bility for use of xilinx products in su ch critical applications, please refer to xilinx?s terms of sale which can be viewed at www.xilinx.com/legal.htm#tos . automotive applications disclaimer xilinx products are not designed or intended to be fail-safe, or for use in any application requiring fail-safe performance, such as applications related to: (i) the de ployment of airbags, (ii) control of a vehicle, unless there is a fail-safe or redundancy feature (which does not include use of software in the xilinx device to implement the redundancy) and a warnin g signal upon failure to the operator, or (iii) uses that could lead to death or personal injury. customer assumes the sole risk and liability of any use of xilinx products in such applications. table 65: efuse programming conditions (1) symbol description min typ max units i plfs v ccaux supply current. ? ? 115 ma t j temperature range. ?40 ? 125 c notes: 1. do not program efuse during device conf iguration (e.g., during configuration, during configuration readback, or when readback crc is active). date version description of revisions 04/20/2016 1.0 initial xilinx release. s e n d f e e d b a c k


▲Up To Search▲   

 
Price & Availability of DS923
DigiKey

Part # Manufacturer Description Price BuyNow  Qty.
ADS9234RIRHBT
296-ADS9234RIRHBTCT-ND
Texas Instruments IC ADC 14BIT SAR 32VQFN 500: USD12.5654
250: USD13.432
100: USD14.1253
25: USD16.0316
10: USD16.725
1: USD18.2
BuyNow
323
ADS9234RIRHBR
296-ADS9234RIRHBRTR-ND
Texas Instruments IC ADC 14BIT SAR 32VQFN 3000: USD7.95072
BuyNow
0

Mouser Electronics

Part # Manufacturer Description Price BuyNow  Qty.
ADS9234RIRHBT
595-ADS9234RIRHBT
Texas Instruments Analog to Digital Converters - ADC 14-bit, 3.5-MSPS, dual, simultaneous-sampling SAR ADC with internal reference and enhanced SPI 32-VQFN -40 to 125 1: USD18.18
10: USD16.72
25: USD16.03
100: USD14.12
250: USD13.43
500: USD12.56
RFQ
0
ADS9234RIRHBR
595-ADS9234RIRHBR
Texas Instruments Analog to Digital Converters - ADC 14-bit, 3.5-MSPS, dual, simultaneous-sampling SAR ADC with internal reference and enhanced SPI 32-VQFN -40 to 125 3000: USD7.94
RFQ
0

Ameya Holding Limited

Part # Manufacturer Description Price BuyNow  Qty.
ADS9234RIRHBT
Texas Instruments RFQ
16720
ADS9234RIRHBR
Texas Instruments RFQ
34107

NAC

Part # Manufacturer Description Price BuyNow  Qty.
DS923+
Synology Inc SYNOLOGY DS923+ 4-BAY NAS 1: USD840.5
BuyNow
82

Neutron USA

Part # Manufacturer Description Price BuyNow  Qty.
DS923+
Synology Inc SYNOLOGY 4-BAY DISKSTATION DS923+ (DISKLESS) 1: USD625.01
BuyNow
50

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X